Crossings and patterns in signed permutations

Matthieu Josuat-Vergès
Université Paris-Sud 11
We use the permutation tableaux of type B introduced by Lam and Williams [3] to define notions of crossings [2] and 31-2 patterns for signed permutations. We define some q-analogues of Eulerian polynomials of type B (se for example [1] for a combinatorial definition of these). These polynomials are such that $E_{n, k}^{B}(q)=E_{n, n-k}^{B}(q)$ and $E_{n, k}^{B}(0)=$ $\binom{n}{k}^{2}$.

A type B permutation tableau of length n is a 0 , 1-filling of a shifted Ferrers diagram of length n satisfying the following conditions: (1) each column has at least one 1 , (2) there is no 0 which has a 1 above it in the same column and a 1 to the left of it in the same row, and (3) if a 0 is in a diagonal cell, then it does not have a 1 to the left of it in the same row. A signed permutation on $[n]$ is a permutation of $[n]$ where each integer may be negated We denote by B_{n} the set of signed permutations on [n]. For $\pi=\pi_{1} \cdots \pi_{n} \in B_{n}$, we define wex (π) to be the number of weak excedances $\left(i \in[n]\right.$ with $\left.\pi_{i} \geq i\right), \operatorname{des}(() \pi)$ to be the number of descents $\left(i \in[n-1]\right.$ with $\left.\pi_{i}>\pi_{i+1}\right)$, $\operatorname{des}\left({ }_{)} B(\pi)\right.$ to be the number of type B descents ($i \in[0, n-1]$ with $\pi_{i}>\pi_{i+1}$ where $\pi_{0}=0$), and neg (π) to be the number of negative integers in π. Let twex $(\pi)=2 \operatorname{wex}(\pi)+\operatorname{neg}(\pi)$.

For $\pi \in B_{n}$, a crossing is a pair (i, j) of integers $i, j \in[n]$ with $i<j \leq \pi(i)<\pi(j)$, $i>j>\pi(i)>\pi(j)$, or $-i<j \leq-\pi(i)<\pi(j)$. For $\pi \in S_{n}$ or $\pi \in B_{n}$, let $\operatorname{cr}(\pi)$ denote the number of crossings of π.

The type B Eulerian number $E_{n, k}^{B}$ is the number of $\pi \in B_{n}$ with $\operatorname{des}\left({ }_{)} B(\pi)=k\right.$. Equivalently, $E_{n, k}^{B}$ is the number of $\pi \in B_{n}$ with $\lfloor\operatorname{twex}(\pi)\rfloor=k$. We define the type $B q$-Eulerian number $E_{n, k}^{B}(q)$ as follows: $E_{n, k}^{B}(q)=\sum_{\lfloor\operatorname{twex}(\pi)\rfloor=k}^{\pi \in B_{n}} q^{\operatorname{cr}(\pi)}$. Let $B_{n, k}(q)=\sum_{\operatorname{twex}(\pi)=k}^{\pi \in B_{n}} q^{\operatorname{cr}(\pi)}$. Then we have $E_{n, k}^{B}(q)=B_{n, 2 k}(q)+B_{n, 2 k+1}(q)$.

We can prove that $B_{n, k}(q)=$ $B_{n, 2 n+1-k}(q)$, using the pig-nose diagram of $\pi=\pi_{1} \cdots \pi_{n} \in B_{n}$ as follows. For example, the following is the pig-nose diagram of $\pi=4,-6,1,-5,-3,7,2$. A nice feature of this diagram is that the crossings of $\pi \in B_{n}$ exactly correspond to the two crossing arcs.

We have defined $B_{n, k}(q)$ in terms of excedances and crossings, but there is an alternative description in terms of ascents of patterns, that generalize the 31-2 pattern that appears in the case of (non-signed) permutations. This is done by using some weighted Motzkin paths, that were defined in [2] using a matrix formulation for the enumeration of type B permutations tableaux. What is nice about these paths is that can adapt some known bijections such as the Françon-Viennot bijection, and obtain that $B_{n, k}=\sum_{\substack{\pi \in B_{n} \\ \operatorname{pasc}(\mathbb{B})=\mathrm{k}}} q^{31-2(\pi)}$, where we use the following statistics: $\operatorname{pasc}(\Omega)$ is the twice number of i with $|\sigma(i)|<\sigma_{i+1}$ plus neg (π), and $31-2(\pi)$ is the number of pairs (i, j) such that either $|\pi(i)|>|\pi(j)|>\pi(i+1)$ and $i<j$, or $|\pi(i)|>-\pi(j) \geq|\pi(i+1)|$. A nice property of this definition is that we immediately recover the notion of 31-2 pattern when all the entries of π are positive.

This is joint work with Sylvie Corteel and Jang Soo Kim.

References

[1] F. Brenti, q-Eulerian polynomials arising from Coxeter groups, European J. Combin. 15 (1994), 417-441.
[2] S. Corteel, M. Josuat-Vergès and L.K. Williams, The Matrix Ansatz, orthogonal polynomials, and permutations, to appear in Advances in Applied Mathematics, 2010.
[3] T. Lam and L.K. Williams, Total positivity for cominuscule Grassmannians, New York Journal of Mathematics, Volume 14, 2008, 53-99.

