MINIMAL OVERLAPPING PATTERNS

Jeffrey Remmel⁵

University of California at San Diego

Given a sequence $\sigma = \sigma_1 \dots \sigma_n$ of distinct integers, let $red(\sigma)$ be the permutation found by replacing the *i*th largest integer that appears in σ by *i*. For example, if $\sigma = 2.7.5.4$, then $red(\sigma) = 1.4.3.2$. Given a permutation $\tau = \tau_1 \dots \tau_j$ in the symmetric group S_j , we say a permutation $\sigma = \sigma_1 \dots \sigma_n \in S_n$ to have a τ -match starting at position *i* provided $red(\sigma_i \dots \sigma_{i+j-1}) = \tau$. Let τ -mch(σ) be the number of τ -matches in the permutation σ . We say that a permutation $\tau \in S_j$ is a **minimal overlapping permutation** if the smallest *n* such that there is $\sigma \in S_n$ where τ -mch(σ) = 2 is 2j - 1. For example, $\tau_3 = 132$, $\tau_4 = 1243$, and, in general, $\tau_n = 12 \dots (n-2)n(n-1)$ are minimal overlapping permutations while $\alpha = 1234$, $\beta = 1324$ are not minimal overlapping permutations.

In this paper, we shall study the following generating functions for minimal overlapping permutations.

$$A_{\tau}(t) = \sum_{n \ge 0} \frac{t^n}{n!} |\{\sigma \in S_n : \tau \operatorname{-mch}(\sigma) = 0\}| \text{ and}$$
(8)

$$P_{\tau}(x,t) = \sum_{n \ge 0} \frac{t^n}{n!} \sum_{\sigma \in S_n} x^{\tau \operatorname{-mch}(\sigma)}.$$
(9)

Given permutations $\alpha, \beta \in S_n$, we say that α is **c-Wilf equivalent (strongly c-Wilf equivalent)** to β if $A_{\alpha}(t) = A_{\beta}(t)$ ($P_{\alpha}(u, t) = P_{\beta}(u, t)$). It is a conjecture of Elizalde [2] that if $\alpha = \alpha_1 \dots \alpha_n$ and $\beta = \beta_1 \dots \beta_n$ are minimal overlapping permutations in S_n such that $\alpha_1 = \beta_1$ and $\alpha_n = \beta_n$, then α is strongly c-Wilf equivalent to β . Our results will prove this conjecture. This conjecture has been proved by a different methods by Dotsenko and Khoroshkin [1].

To state our results, we need one more definition. Given a minimal overlapping permutation $\tau \in S_j$, we say that $\sigma \in S_{j+s(j-1)}$ is a **maximum packing** for τ if and only if σ has τ -matchings starting at positions 1, j, 2j - 1, 3j - 2, ..., sj - (j - 1). We let $\mathcal{MP}_{\tau, j+s(j-1)}$ be the such that of $\sigma \in S_{j+s(j-1)}$ such that σ is a maximum packing for τ and

$$MP_{\tau,j+s(j-1)}(q) = \sum_{\sigma \in \mathcal{MP}_{\tau,j+s(j-1)}} q^{inv(\sigma)}.$$

Then we prove that

Theorem 1.

$$\sum_{n \ge 0} \frac{t^n}{n!} \sum_{\sigma \in S_n} x^{\tau - \operatorname{mch}(\sigma)} q^{inv(\sigma)} \frac{1}{1 - (t + \sum_{s \ge 0} \frac{t^{j+s(j-1)}}{[j+s(j-1)]_q!} (x-1)^{s+1} M P_{\tau,j+s(j-1)}(q))}$$

In particular, when q = 1, we get

Theorem 2. Suppose that τ is a minimal overlapping permutation. Then

$$P_{\tau}(x,t) = \sum_{n \ge 0} \frac{t^n}{n!} \sum_{\sigma \in S_n} x^{\tau - \mathrm{mch}(\sigma)}$$

$$= \frac{1}{1 - (t + \sum_{s \ge 0} \frac{t^{j + s(j-1)}}{(j + s(j-1)!)} (x - 1)^{s+1} M P_{\tau, j + s(j-1)})}.$$
(10)

⁵Partially supported by NSF grant DMS 0654060.

Then using an idea of Kitaev, we prove that if $\alpha = \alpha_1 \dots \alpha_j$ and $\beta = \beta_1 \dots \beta_j$ are minimal overlapping permutations in S_j and $\alpha_1 = \beta_1$ and $\alpha_j = \beta_j$, then for all $s \ge 0$, $MP_{\alpha,j+s(j-1)} = MP_{\beta,j+s(j-1)}$. Hence it follows from Theorem 2, that $P_{\alpha}(x,t) = P_{\beta}(x,t)$.

In many cases where τ is a minimal overlapping permutation, we can explicitly compute $MP_{\tau,j+s(j-1)}$. For example, if $\tau = \tau_1 \dots \tau_j$ where $\tau_1 = 1$ and $\tau_j = k$, then we can show that for $s \ge 1$,

$$MP_{\tau,j+s(j-1)} = \prod_{i=1}^{s} {j+i(j-1)-k \choose j-k}.$$

Hence we can get an explicit expression for $P_{\tau}(x, t)$.

This is joint work with Adrian Duane (University of California, San Diego).

References

- [1] V. Dotsenko and A. Khoroshkin, Anick-type resolutions and consecutive pattern avoidance, preprint.
- [2] S. Elizalde, Consecutive Patterns and statistics on restricted permutations, Ph.D. thesis, Universitat Politécnica de Catalunya, 2004.