Minimal overlapping patterns

Jeffrey Remmel ${ }^{5}$
 University of California at San Diego

Given a sequence $\sigma=\sigma_{1} \ldots \sigma_{n}$ of distinct integers, let red (σ) be the permutation found by replacing the $i^{\text {th }}$ largest integer that appears in σ by i. For example, if $\sigma=2754$, then $\operatorname{red}(\sigma)=1432$. Given a permutation $\tau=\tau_{1} \ldots \tau_{j}$ in the symmetric group S_{j}, we say a permutation $\sigma=\sigma_{1} \ldots \sigma_{n} \in S_{n}$ to have a τ-match starting at position i provided $\operatorname{red}\left(\sigma_{i} \ldots \sigma_{i+j-1}\right)=\tau$. Let $\tau-\operatorname{mch}(\sigma)$ be the number of τ-matches in the permutation σ. We say that a permutation $\tau \in S_{j}$ is a minimal overlapping permutation if the smallest n such that there is $\sigma \in S_{n}$ where τ - $\operatorname{mch}(\sigma)=2$ is $2 j-1$. For example, $\tau_{3}=132, \tau_{4}=1243$, and, in general, $\tau_{n}=12 \cdots(n-2) n(n-1)$ are minimal overlapping permutations while $\alpha=1234, \beta=1324$ are not minimal overlapping permutations.

In this paper, we shall study the following generating functions for minimal overlapping permutations.

$$
\begin{align*}
A_{\tau}(t) & =\sum_{n \geq 0} \frac{t^{n}}{n!}\left|\left\{\sigma \in S_{n}: \tau-\operatorname{mch}(\sigma)=0\right\}\right| \text { and } \tag{8}\\
P_{\tau}(x, t) & =\sum_{n \geq 0} \frac{t^{n}}{n!} \sum_{\sigma \in S_{n}} x^{\tau-\operatorname{mch}(\sigma)} . \tag{9}
\end{align*}
$$

Given permutations $\alpha, \beta \in S_{n}$, we say that α is \mathbf{c}-Wilf equivalent (strongly c -Wilf equivalent) to β if $A_{\alpha}(t)=A_{\beta}(t)\left(P_{\alpha}(u, t)=P_{\beta}(u, t)\right)$. It is a conjecture of Elizalde [2] that if $\alpha=\alpha_{1} \ldots \alpha_{n}$ and $\beta=\beta_{1} \ldots \beta_{n}$ are minimal overlapping permutations in S_{n} such that $\alpha_{1}=\beta_{1}$ and $\alpha_{n}=\beta_{n}$, then α is strongly c -Wilf equivalent to β. Our results will prove this conjecture. This conjecture has been proved by a different methods by Dotsenko and Khoroshkin [1].

To state our results, we need one more definition. Given a minimal overlapping permutation $\tau \in S_{j}$, we say that $\sigma \in S_{j+s(j-1)}$ is a maximum packing for τ if and only if σ has τ-matchings starting at positions $1, j, 2 j-1,3 j-2, \ldots, s j-(j-1)$. We let $\mathcal{M} \mathcal{P}_{\tau, j+s(j-1)}$ be the such that of $\sigma \in S_{j+s(j-1)}$ such that σ is a maximum packing for τ and

$$
M P_{\tau, j+s(j-1)}(q)=\sum_{\sigma \in \mathcal{M} \mathcal{P}_{\tau, j+s(j-1)}} q^{i n v(\sigma)}
$$

Then we prove that

Theorem 1.

$$
\sum_{n \geq 0} \frac{t^{n}}{n!} \sum_{\sigma \in S_{n}} x^{\tau-\operatorname{mch}(\sigma)} q^{i n v(\sigma)} \frac{1}{1-\left(t+\sum_{s \geq 0} \frac{t+s(j-1)}{[j+s(j-1) q!}(x-1)^{s+1} M P_{\tau, j+s(j-1)}(q)\right)} .
$$

In particular, when $q=1$, we get
Theorem 2. Suppose that τ is a minimal overlapping permutation. Then

$$
\begin{align*}
P_{\tau}(x, t) & =\sum_{n \geq 0} \frac{t^{n}}{n!} \sum_{\sigma \in S_{n}} x^{\tau-m \operatorname{ch}(\sigma)} \tag{10}\\
& =\frac{1}{1-\left(t+\sum_{s \geq 0} \frac{j^{j+s(j-1)}}{(j+s(j-1)!!}(x-1)^{s+1} M P_{\tau, j+s(j-1)}\right)} .
\end{align*}
$$

[^0]Then using an idea of Kitaev, we prove that if $\alpha=\alpha_{1} \ldots \alpha_{j}$ and $\beta=\beta_{1} \ldots \beta_{j}$ are minimal overlapping permutations in S_{j} and $\alpha_{1}=\beta_{1}$ and $\alpha_{j}=\beta_{j}$, then for all $s \geq 0$, $M P_{\alpha, j+s(j-1)}=M P_{\beta, j+s(j-1)}$. Hence it follows from Theorem 2, that $P_{\alpha}(x, t)=P_{\beta}(x, t)$.

In many cases where τ is a minimal overlapping permutation, we can explicitly compute $M P_{\tau, j+s(j-1)}$. For example, if $\tau=\tau_{1} \ldots \tau_{j}$ where $\tau_{1}=1$ and $\tau_{j}=k$, then we can show that for $s \geq 1$,

$$
M P_{\tau, j+s(j-1)}=\prod_{i=1}^{s}\binom{j+i(j-1)-k}{j-k} .
$$

Hence we can get an explicit expression for $P_{\tau}(x, t)$.
This is joint work with Adrian Duane (University of California, San Diego).

References

[1] V. Dotsenko and A. Khoroshkin, Anick-type resolutions and consecutive pattern avoidance, preprint.
[2] S. Elizalde, Consecutive Patterns and statistics on restricted permutations, Ph.D. thesis, Universitat Politécnica de Catalunya, 2004.

[^0]: ${ }^{5}$ Partially supported by NSF grant DMS 0654060.

