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The Robinson-Schensted correspondence associates to any permutation (or word) σ
a pair of Young tableaux, each of equal partition shape λ = (λ1, . . . , λk). We say that σ
has shape sh(σ) = λ. Many properties of σ translate to natural properties of the tableaux
and vice versa; the study of one object is made easier through the study of the other.
For example, the length of the longest increasing subsequence of σ equals λ1. In fact,
Greene’s Theorem [?] gives a much more precise correspondence: The sum λ1 + · · ·+ λk

equals the maximum number of elements in a disjoint union of k increasing subsequences
of σ. However, it is not generally true that one can find k disjoint increasing subsequences
u1, u2, . . . , uk with ui of length λi for each i. (An example is afforded by σ = 236145
whose shape is (4, 2).) Our main result is a sufficient condition for such a collection of
subsequences {ui} to exist:

Theorem 1. Let σ be a separable permutation (i.e., 2413 and 3142-avoiding) with sh(σ) = λ =
(λ1, . . . , λk). Then there exist k disjoint, increasing subsequences u1, . . . , uk, with ui of maximum
length in σ \ (u1 ∪ · · · ∪ ui−1), such that the length of each ui is given by λi.

The proof is based on the inversion poset of σ and the fact that when σ is separable its

inversion poset has no subposet isomorphic to
∗ ∗

∗
!

!
!

∗
. We present one corollary and one

application.

Corollary 2. If a word w contains a separable permutation σ as a pattern, then sh(w) ⊇ sh(σ).

The necessity of having σ be separable is illustrated by the pair σ = 3142 (of shape
(2, 2)) and w = 41352 (of shape (3, 1, 1)).

Our application involves shortest containing supersequences. These have important appli-
cations in such areas as statistics and computational biology. A word w is a supersequence
of a permutation σ if σ is a subsequence. For any set of permutations B ⊆ Sn, w is a
supersequence of B if w is a supersequence of each element of B. Let scsn(B) denote the
minimum length of a supersequence of the set B. Koutas and Hu [?] construct explicit
supersequences to show that scsn(Sn) ≤ n2 − 2n + 4. On the other hand, Kleitman and
Kwiatkowski [?] have shown that scsn(Sn) ≥ n2 − Cn7/4+ε where ε > 0 and C depends
on ε. We consider the problem of finding explicit sets B for which we can compute a lower
bound for scsn(B) in a simple manner.

So, let µ(n) be the Ferrers diagram obtained by taking the union of all Ferrers dia-
grams of size n. The size of µ(n) is ∑n

i=1 d(i) where d(i) denotes the number of divisors
of i. Asymptotically, |µ(n)| ∼ n(ln n + 2γ + · · · ). The number of corners in µ(n) is
counted by )

√
4n + 1+− 1. If we associate a separable permutation to each corner of µ(n),

then Corollary 2 implies that there is a set B of )
√

4n + 1+ − 1 permutations for which
scsn(B) ≥ n(ln n + 2γ + · · · ).

This is joint work with Andrew Crites and Greg Warrington.
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