Separable permutations, Robinson-Schensted and shortest containing supersequences

Greta Panova

Harvard University

The Robinson-Schensted correspondence associates to any permutation (or word) σ a pair of *Young tableaux*, each of equal partition shape $\lambda = (\lambda_1, \ldots, \lambda_k)$. We say that σ has *shape* $\operatorname{sh}(\sigma) = \lambda$. Many properties of σ translate to natural properties of the tableaux and vice versa; the study of one object is made easier through the study of the other. For example, the length of the longest increasing subsequence of σ equals λ_1 . In fact, Greene's Theorem [?] gives a much more precise correspondence: The sum $\lambda_1 + \cdots + \lambda_k$ equals the maximum number of elements in a disjoint union of *k* increasing subsequences of σ . However, it is not generally true that one can find *k* disjoint increasing subsequences u^1, u^2, \ldots, u^k with u^i of length λ_i for each *i*. (An example is afforded by $\sigma = 236145$ whose shape is (4, 2).) Our main result is a sufficient condition for such a collection of subsequences $\{u^i\}$ to exist:

Theorem 1. Let σ be a separable permutation (i.e., 2413 and 3142-avoiding) with $\operatorname{sh}(\sigma) = \lambda = (\lambda_1, \ldots, \lambda_k)$. Then there exist k disjoint, increasing subsequences u^1, \ldots, u^k , with u^i of maximum length in $\sigma \setminus (u^1 \cup \cdots \cup u^{i-1})$, such that the length of each u^i is given by λ_i .

Corollary 2. If a word w contains a separable permutation σ as a pattern, then $\operatorname{sh}(w) \supseteq \operatorname{sh}(\sigma)$.

The necessity of having σ be separable is illustrated by the pair $\sigma = 3142$ (of shape (2, 2)) and w = 41352 (of shape (3, 1, 1)).

Our application involves *shortest containing supersequences*. These have important applications in such areas as statistics and computational biology. A word w is a *supersequence* of a permutation σ if σ is a subsequence. For any set of permutations $B \subseteq S_n$, w is a *supersequence* of B if w is a supersequence of each element of B. Let $scs_n(B)$ denote the minimum length of a supersequence of the set B. Koutas and Hu [?] construct explicit supersequences to show that $scs_n(S_n) \leq n^2 - 2n + 4$. On the other hand, Kleitman and Kwiatkowski [?] have shown that $scs_n(S_n) \geq n^2 - Cn^{7/4+\varepsilon}$ where $\varepsilon > 0$ and C depends on ε . We consider the problem of finding explicit sets B for which we can compute a *lower* bound for $scs_n(B)$ in a simple manner.

So, let $\mu(n)$ be the Ferrers diagram obtained by taking the union of all Ferrers diagrams of size n. The size of $\mu(n)$ is $\sum_{i=1}^{n} d(i)$ where d(i) denotes the number of divisors of i. Asymptotically, $|\mu(n)| \sim n(\ln n + 2\gamma + \cdots)$. The number of corners in $\mu(n)$ is counted by $\lfloor \sqrt{4n+1} \rfloor - 1$. If we associate a separable permutation to each corner of $\mu(n)$, then Corollary 2 implies that there is a set B of $\lfloor \sqrt{4n+1} \rfloor - 1$ permutations for which $\operatorname{scs}_n(B) \geq n(\ln n + 2\gamma + \cdots)$.

This is joint work with Andrew Crites and Greg Warrington.

References

 Curtis Greene. An extension of Schensted's theorem. Advances in Math., 14:254–265, 1974.

- [2] D. J. Kleitman and D. J. Kwiatkowski. A lower bound on the length of a sequence containing all permutations as subsequences. J. Combinatorial Theory Ser. A, 21(2):129– 136, 1976.
- [3] P. J. Koutas and T. C. Hu. Shortest string containing all permutations. *Discrete Math.*, 11:125–132, 1975.