Separable permutations, Robinson-Schensted and shortest CONTAINING SUPERSEQUENCES

Greta Panova
Harvard University

The Robinson-Schensted correspondence associates to any permutation (or word) σ a pair of Young tableaux, each of equal partition shape $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$. We say that σ has shape $\operatorname{sh}(\sigma)=\lambda$. Many properties of σ translate to natural properties of the tableaux and vice versa; the study of one object is made easier through the study of the other. For example, the length of the longest increasing subsequence of σ equals λ_{1}. In fact, Greene's Theorem [?] gives a much more precise correspondence: The sum $\lambda_{1}+\cdots+\lambda_{k}$ equals the maximum number of elements in a disjoint union of k increasing subsequences of σ. However, it is not generally true that one can find k disjoint increasing subsequences $u^{1}, u^{2}, \ldots, u^{k}$ with u^{i} of length λ_{i} for each i. (An example is afforded by $\sigma=236145$ whose shape is $(4,2)$.) Our main result is a sufficient condition for such a collection of subsequences $\left\{u^{i}\right\}$ to exist:
Theorem 1. Let σ be a separable permutation (i.e., 2413 and 3142-avoiding) with $\operatorname{sh}(\sigma)=\lambda=$ $\left(\lambda_{1}, \ldots, \lambda_{k}\right)$. Then there exist k disjoint, increasing subsequences u^{1}, \ldots, u^{k}, with u^{i} of maximum length in $\sigma \backslash\left(u^{1} \cup \cdots \cup u^{i-1}\right)$, such that the length of each u^{i} is given by λ_{i}.

The proof is based on the inversion poset of σ and the fact that when σ is separable its inversion poset has no subposet isomorphic to $\left.\left.\right|_{*} ^{*}\right|_{*} ^{*}$. We present one corollary and one application.
Corollary 2. If a word w contains a separable permutation σ as a pattern, then $\operatorname{sh}(w) \supseteq \operatorname{sh}(\sigma)$.
The necessity of having σ be separable is illustrated by the pair $\sigma=3142$ (of shape $(2,2)$) and $w=41352$ (of shape $(3,1,1)$).

Our application involves shortest containing supersequences. These have important applications in such areas as statistics and computational biology. A word w is a supersequence of a permutation σ if σ is a subsequence. For any set of permutations $B \subseteq S_{n}, w$ is a supersequence of B if w is a supersequence of each element of B. Let $\operatorname{scs}_{n}(B)$ denote the minimum length of a supersequence of the set B. Koutas and Hu [?] construct explicit supersequences to show that $\operatorname{scs}_{n}\left(S_{n}\right) \leq n^{2}-2 n+4$. On the other hand, Kleitman and Kwiatkowski [?] have shown that $\operatorname{scs}_{n}\left(S_{n}\right) \geq n^{2}-C n^{7 / 4+\varepsilon}$ where $\varepsilon>0$ and C depends on ε. We consider the problem of finding explicit sets B for which we can compute a lower bound for $\operatorname{scs}_{n}(B)$ in a simple manner.

So, let $\mu(n)$ be the Ferrers diagram obtained by taking the union of all Ferrers diagrams of size n. The size of $\mu(n)$ is $\sum_{i=1}^{n} d(i)$ where $d(i)$ denotes the number of divisors of i. Asymptotically, $|\mu(n)| \sim n(\ln n+2 \gamma+\cdots)$. The number of corners in $\mu(n)$ is counted by $\lfloor\sqrt{4 n+1}\rfloor-1$. If we associate a separable permutation to each corner of $\mu(n)$, then Corollary 2 implies that there is a set B of $\lfloor\sqrt{4 n+1}\rfloor-1$ permutations for which $\operatorname{sCs}_{n}(B) \geq n(\ln n+2 \gamma+\cdots)$.
This is joint work with Andrew Crites and Greg Warrington.

References

[1] Curtis Greene. An extension of Schensted's theorem. Advances in Math., 14:254-265, 1974.
[2] D. J. Kleitman and D. J. Kwiatkowski. A lower bound on the length of a sequence containing all permutations as subsequences. J. Combinatorial Theory Ser. A, 21(2):129136, 1976.
[3] P. J. Koutas and T. C. Hu. Shortest string containing all permutations. Discrete Math., 11:125-132, 1975.

