An asymptotic version of a theorem of Knuth

One of the earliest results in the theory of pattern avoidance is the enumeration of permutations with no decreasing subsequence of length three: they are are counted by the Catalan numbers. The first published proof of this fact is due to Knuth in the 1960's. A later and a priori much more difficult result is Regev's 1981 asymptotic estimate of the number of permutations of $[N]$ which have no decreasing subsequence of length $d+1$, in the large N limit with d fixed. I will discuss the following recent result which provides a conceptual link between these formulas of Knuth and Regev: for any fixed positive integer d, the number of permutations in the symmetric group $S(d n)$ with no decreasing subsequence of length $d+1$ is asymptotically equal, for large n, to the number of standard Young tableaux on the d by $2 n$ rectangle. This asymptotic equivalence allows one to obtain Regev's estimate by a direct application of Stirling's formula. The proof of the stated asymptotic equivalence amounts to a physically obvious symmetry in the energy functional of a Coulomb gas on the line confined by a potential well at zero. If time permits we will discuss some connections between the "rectangle" estimate and the TracyWidom law, which emerges in the asymptotics of permutations without long decreasing subsequence when one takes a double scaling limit.

