GENERATING FUNCTIONS FOR WILF EQUIVALENCE UNDER GENERALIZED FACTOR ORDER

Jeffrey Liese

California Polytechnic State University

Kitaev, Liese, Remmel, and Sagan recently defined generalized factor order on words comprised of letters from a partially ordered set (P, \leq_P) by setting $u \leq_P w$ if there is a subword v of w of the same length as u such that the *i*-th character of v is greater than or equal to the *i*-th character of u for all *i*. This subword v is called an embedding of u into w. Generalized factor order is related to generalized subword order, in which the characters of v are not required to be adjacent [2]. For the case where P is the positive integers with the usual ordering, they defined the weight of a word $w = w_1 \dots w_n$ to be wt $(w) = x \sum_{i=1}^{n} w_i t^n$, and the corresponding weight generating function

$$F(u; t, x) = \sum_{w \ge P^u} \operatorname{wt}(w)$$

They then defined two words u and v to be Wilf equivalent, denoted $u \, \backsim \, v$, if and only if F(u;t,x) = F(v;t,x). They also defined the related generating function $S(u;t,x) = \sum_{w \in S(u)} \operatorname{wt}(w)$ where S(u) is the set of all words w such that the only embedding of uinto w is a suffix of w, and showed that $u \, \backsim \, v$ if and only if S(u;t,x) = S(v;t,x). We continue this study by giving an explicit formula for S(u;t,x) if u factors into a weakly increasing word followed by a weakly decreasing word.

Kitaev, Liese, Remmel and Sagan [1] gave two examples of classes of words u such that S(u; t, x) has a simple form. That is, they proved that if $u = 1 \ 2 \ 3 \dots n - 1 \ n$ or $u = 1^k b^\ell$ for some $k \ge 0$, $\ell \ge 1$, and $b \ge 2$, then $S(u; t, x) = \frac{x^s t^r}{P(u; t, x)}$ for some polynomial P(u; t, x), and produced an explicit expression for P(u; t, x) in each case.

We shall show that there is a much richer class of of words u such that S(u;t,x) has this same form. Specifically, for any word u, let u_{inc} be the longest weakly increasing prefix of u. If $u = u_{inc}v$ and v is weakly decreasing, then we shall say that u has an *increasing/decreasing factorization* and denote v as u_{dec} . Thus if $u = u_1u_2...u_n$ has an increasing/decreasing factorization, then either $u_1 \le \cdots \le u_n$, in which case $u_{inc} = u$ and u_{dec} is the empty string ε , or there is a k < n such that $u_1 \le \cdots \le u_k > u_{k+1} \ge \cdots \ge u_n$, in which case $u_{inc} = u_1...u_k$ and $u_{dec} = u_{k+1}...u_n$. For the theorem that follows, we define

$$D^{(i)}(u) = \{n - i + j : 1 \le j \le i \text{ and } u_j > u_{n-i+j}\}$$

and $d_i(u) = \sum_{n-i+j\in D^{(i)}(u)} (u_j - u_{n-i+j})$. Our main result is the following theorem.

Theorem 1. Let $u = u_1u_2...u_n \in \mathcal{P}^*$ have an increasing/decreasing factorization. For $1 \le i \le n-1$, let $s_i = u_{i+1}u_{i+2}...u_n$ and $d_i = d_i(u)$. Also let $s_n = \varepsilon$ and $d_n = 0$. Then

$$S(u; t, x) = \frac{t^n x^{\Sigma(u)}}{t^n x^{\Sigma(u)} + (1 - x - tx) \sum_{i=1}^n t^{n-i} x^{d_i + \Sigma(s_i)} (1 - x)^{i-1}}$$

We can use this formula as an aid to classify Wilf equivalence in a variety of cases, specifically we can classify all equivalences for all words of length 3. In fact, it turns out that the coefficients of related generating functions are well-known sequences in several special cases. Finally, we discuss a conjecture that if $u \sim v$ then u and v must be rearrangements, and the stronger conjecture that there also must be a weight-preserving bijection $f : S(u) \rightarrow S(v)$ such that f(u) is a rearrangement of u for all u.

Much of the work in [1] demonstrates and verifies Wilf equivalence when the standard order on the positive integers is used. However, different posets have also yielded non-trivial Wilf equivalences that are worth mention. We will also discuss various equivalences when using two specific partial orders on \mathbb{P}^* : the mod *k* partial order, defined by setting $m \leq_k n$ if $m \leq n$ and $m = n \mod k$ (see [3]), and the fence partial order defined by the cover relations 2i - 1 < 2i and 2i + 1 < 2i for all positive integers *i*.

This is joint work with Thomas Langley and Jeffrey Remmel.

References

- [1] Sergey Kitaev, Jeffrey Liese, Jeffrey Remmel, Bruce E. Sagan, Rationality, Irrationality, and Wilf equivalence in generalized factor order. *Electron. J. Combin.* **16** (2009).
- [2] Bruce E. Sagan and Vincent Vatter, The Möbius function of a composition poset. J. *Algebraic Combin.* **24** (2006), 111–136.
- [3] Thomas Langley, Jeffery Liese, Jeffrey Remmel, Wilf equivalence for generalized factor orders modulo *k*, preprint.