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Kitaev, Liese, Remmel, and Sagan recently defined generalized factor order on words
comprised of letters from a partially ordered set (P,≤P) by setting u ≤P w if there is a
subword v of w of the same length as u such that the i-th character of v is greater than
or equal to the i-th character of u for all i. This subword v is called an embedding of u
into w. Generalized factor order is related to generalized subword order, in which the
characters of v are not required to be adjacent [2]. For the case where P is the positive
integers with the usual ordering, they defined the weight of a word w = w1 . . . wn to be
wt(w) = x∑n

i=1 witn, and the corresponding weight generating function

F(u; t, x) = ∑
w≥Pu

wt(w).

They then defined two words u and v to be Wilf equivalent, denoted u ! v, if and only
if F(u; t, x) = F(v; t, x). They also defined the related generating function S(u; t, x) =
∑w∈S(u) wt(w) where S(u) is the set of all words w such that the only embedding of u
into w is a suffix of w, and showed that u ! v if and only if S(u; t, x) = S(v; t, x). We
continue this study by giving an explicit formula for S(u; t, x) if u factors into a weakly
increasing word followed by a weakly decreasing word.

Kitaev, Liese, Remmel and Sagan [1] gave two examples of classes of words u such that
S(u; t, x) has a simple form. That is, they proved that if u = 1 2 3 . . . n − 1 n or u = 1kb!

for some k ≥ 0, ! ≥ 1, and b ≥ 2, then S(u; t, x) = xstr

P(u;t,x) for some polynomial P(u; t, x),

and produced an explicit expression for P(u; t, x) in each case.
We shall show that there is a much richer class of of words u such that S(u; t, x) has

this same form. Specifically, for any word u, let uinc be the longest weakly increasing
prefix of u. If u = uincv and v is weakly decreasing, then we shall say that u has an
increasing/decreasing factorization and denote v as udec. Thus if u = u1u2 . . . un has an
increasing/decreasing factorization, then either u1 ≤ · · · ≤ un, in which case uinc = u and
udec is the empty string ε, or there is a k < n such that u1 ≤ · · · ≤ uk > uk+1 ≥ · · · ≥ un, in
which case uinc = u1 . . . uk and udec = uk+1 . . . un. For the theorem that follows, we define

D(i)(u) = {n − i + j : 1 ≤ j ≤ i and uj > un−i+j}

and di(u) = ∑
n−i+j∈D(i)(u)

(uj − un−i+j). Our main result is the following theorem.

Theorem 1. Let u = u1u2 . . . un ∈ P∗ have an increasing/decreasing factorization. For 1 ≤ i ≤
n − 1, let si = ui+1ui+2 . . . un and di = di(u). Also let sn = ε and dn = 0. Then

S(u; t, x) =
tnxΣ(u)

tnxΣ(u) + (1 − x − tx) ∑
n
i=1 tn−ixdi+Σ(si)(1 − x)i−1

.

We can use this formula as an aid to classify Wilf equivalence in a variety of cases,
specifically we can classify all equivalences for all words of length 3. In fact, it turns out
that the coefficients of related generating functions are well-known sequences in several
special cases. Finally, we discuss a conjecture that if u ! v then u and v must be rearrange-
ments, and the stronger conjecture that there also must be a weight-preserving bijection
f : S(u) → S(v) such that f (u) is a rearrangement of u for all u.
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Much of the work in [1] demonstrates and verifies Wilf equivalence when the standard
order on the positive integers is used. However, different posets have also yielded non-
trivial Wilf equivalences that are worth mention. We will also discuss various equivalences
when using two specific partial orders on P∗: the mod k partial order, defined by setting
m ≤k n if m ≤ n and m = n mod k (see [3]), and the fence partial order defined by the
cover relations 2i − 1 < 2i and 2i + 1 < 2i for all positive integers i.

This is joint work with Thomas Langley and Jeffrey Remmel.
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