Pattern matching in the cycle structures of permutations

In this paper, we study matching conditions within the cycle structure of a permutation. Given a sequence $\sigma=\sigma_{1} \ldots \sigma_{n}$ of distinct integers, let red (σ) be the permutation found by replacing the $i^{\text {th }}$ largest integer that appears in σ by i. For example, if $\sigma=2754$, then $\operatorname{red}(\sigma)=1432$. Suppose that $\tau=\tau_{1} \ldots \tau_{j}$ is a permutation in S_{j} and σ is a permutation in S_{n} with k cycles $C_{1} \ldots C_{k}$. We shall always write cycles in the form $C_{i}=\left(c_{0, i}, \ldots, c_{p_{i}-1, i}\right)$ where $c_{0, i}$ is the smallest element in C_{i} and p_{i} is the length of C_{i} and we arrange the cycles by decreasing smallest elements. That is, we arrange the cycles of σ so that $c_{0,1}>\cdots>c_{0, k}$. Then we say that σ has a cycle τ-match (c - τ-match) if there is an i such that $C_{i}=\left(c_{0, i}, \ldots, c_{p_{i}-1, i}\right)$ where $p_{i} \geq j$ and an r such that $\operatorname{red}\left(c_{r, i} c_{r+1, i} \ldots c_{r+j-1, i}\right)=\tau$ where we take indices of the form $r+s$ modulo p_{i}. Let $c-\tau$-mch (σ) be the number of cycle τ-matches in the permutation σ. For example, if $\tau=213$ and $\sigma=(1,10,9)(2,3)(4,7,5,8,6)$, then 9110 is a cycle τ-match in the first cycle and 758 and 647 are cycle τ-matches in the third cycle so that $c-\tau-\operatorname{mch}(\sigma)=3$. Similarly, we say that τ cycle occurs in σ if there exists an i such that $C_{i}=\left(c_{0, i}, \ldots, c_{p_{i}-1, i}\right)$ where $p_{i} \geq j$ and there is an r with $0 \leq r \leq p_{i}-1$ and indices $0 \leq i_{1}<\cdots<i_{j-1} \leq p_{i}-1$ such that $\operatorname{red}\left(c_{r, i} c_{r+i_{1}, i} \ldots c_{r+i_{j-1}, i}\right)=\tau$ where the indices $r+i_{s}$ are taken $\bmod p_{i}$. We say that σ cycle avoids τ if there are no cycle occurrences of τ in σ. For example, if $\tau=123$ and $\sigma=(1,10,9)(2,3)(4,8,5,7,6)$, then 457,456 , and 568 are cycle occurrences of τ in the third cycle. We can extend of the notion of cycle matches and cycle occurrences to sets of permutations in the obvious fashion. Given a set of permutations $\mathrm{Y} \subseteq S_{j}$, we let $\mathcal{C} \mathcal{A} \mathcal{S}_{n, k}(\mathrm{Y})\left(\mathcal{N C} \mathcal{M} \mathcal{S}_{n, k}(\mathrm{Y})\right)$ denote the set of permutations $\sigma \in S_{n}$ such that σ has k-cycles and σ cycle avoids Y (σ has no cycle Y -matches). Similarly, we let $\mathcal{L}_{m}^{c a}(\mathrm{Y})\left(\mathcal{L}_{m}^{n c m}(\mathrm{Y})\right.$) be the set of m cycles γ in S_{m} such γ cycle avoids Y (γ has no cycle Y -matches).

Given a permutation $\sigma=\sigma_{1} \ldots \sigma_{n} \in S_{n}$, we let $\operatorname{des}(\sigma)=\left|\left\{i: \sigma_{i}>\sigma_{i+1}\right\}\right|$. We say that σ_{j} is left-to-right minima of σ if $\sigma_{j}<\sigma_{i}$ for all $i<j$. We let $\operatorname{lrmin}(\sigma)$ denote the number of left-to-right minma of σ. Given a cycle $C=\left(c_{0}, \ldots, c_{p-1}\right)$ where c_{0} is the smallest element in the cycle, we let $\operatorname{cdes}(C)=1+\operatorname{des}\left(c_{0} \ldots c_{p-1}\right)$. Thus $\operatorname{cdes}(C)$ counts the number of descent pairs as we traverse once around the cycle because the extra factor of 1 counts the descent pair $c_{p-1}>c_{0}$. For example if $C=(1,5,3,7,2)$, then $\operatorname{cdes}(C)=3$ which counts the descent pairs 53,72 , and 21 as we traverse once around C. By convention, if $C=\left(c_{0}\right)$ is one-cycle, we let $\operatorname{cdes}(C)=1$. If σ is a permutation in S_{n} with k cycles $C_{1} \ldots C_{k}$, then we define $\operatorname{cdes}(\sigma)=\sum_{i=1}^{k} \operatorname{cdes}\left(C_{i}\right)$. We let $\operatorname{cyc}(\sigma)$ denote the number of cycles of σ.

The following theorem easily follows from the theory of exponential structures.

Theorem 1.

$$
\begin{equation*}
C A_{\mathrm{Y}}(t, x, y)=1+\sum_{n \geq 1} \frac{t^{n}}{n!} \sum_{k=1}^{n} x^{k} \sum_{\sigma \in \mathcal{C} \mathcal{A S}_{n, k}(Y)} y^{\operatorname{cdes}(\sigma)}=e^{x \sum_{m \geq 1} \frac{t^{m}}{m!} \sum_{C \in \mathcal{L}_{M}^{c(\gamma}(Y)} y^{\operatorname{cdes}(C)}}, \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{NCM}_{\mathrm{Y}}(t, x, y)=1+\sum_{n \geq 1} \frac{t^{n}}{n!} \sum_{k=1}^{n} x^{k} \sum_{\sigma \in \mathcal{N C \mathcal { M }} \mathcal{S}_{n, k}(\mathrm{Y})} y^{\operatorname{c\operatorname {ces}(\sigma)}=e^{x \sum_{m \geq 1} \frac{t^{m}}{m!} \Sigma_{\mathrm{C} \in \mathcal{C}_{n}^{n m}(\mathrm{Y})} y^{\operatorname{cdes}(\mathrm{C})}} ~} \tag{2}
\end{equation*}
$$

It turns out that if $\tau \in S_{j}$ is a permutation that starts with 1 , then we can reduce the problem of finding $N C M_{\tau}(t, x, y)$ to the usual problem of finding the generating function
of permutations that have no τ-matches. For any permutation $\tau \in S_{j}$, let $\mathcal{N} \mathcal{M}_{n}(\tau)$ be the set of $\sigma \in S_{n}$ such that σ has no τ-matches and

$$
N M_{\tau}(t, x, y)=\sum_{n \geq 0} \frac{t^{n}}{n!} \sum_{\sigma \in \mathcal{N} \mathcal{M}_{n}(\tau)} x^{\operatorname{lrmin}(\sigma)} y^{1+\operatorname{des}(\sigma)} .
$$

Then we can show that if τ starts with 1 , then

$$
\begin{equation*}
N C M_{\tau}(t, x, y)=N M_{\tau}(t, x, y) . \tag{3}
\end{equation*}
$$

Using this fact, one can automatically refine a number of theorems on the literature on consecutive pattern avoidance. For example, Goulden and Jackson [1] proved a generating funtion for permutations that have no $12 \ldots k$-matches which can be combined with Theorem 1 to prove the following refinement of their result.

Theorem 2. If $\tau=12 \ldots k$ where $k \geq 2$, then

$$
\begin{equation*}
N M_{\tau}(t, x, 1)=\left(\frac{1}{\sum_{i \geq 0} \frac{t^{k i}}{(k i)!}-\frac{t^{k i+1}}{(k i+1)!}}\right)^{x} . \tag{4}
\end{equation*}
$$

In fact using Theorem 1 and a theorem of Mendes and Remmel [2], we can show
Theorem 3. For $k \geq 2$ and $\tau=12 \ldots k$,

$$
\begin{align*}
& \operatorname{NCM}_{\tau}(t, x, y)=\sum_{n \geq 0} \frac{t^{n}}{n!} \sum_{\sigma \in \mathcal{N C M}} x_{n}(\tau) \tag{5}\\
& x^{c y c}(\sigma) y^{\operatorname{cdes}(\sigma)} \\
&=e^{x \ln \left(\frac{1}{\sum_{n \geq 0} \frac{n n_{n}}{n!} \Sigma_{i \geq 0}(-1)^{i} \mathcal{R}_{n-1, i, k-1 y^{n-i}}}\right)}
\end{align*}
$$

where $\mathcal{R}_{n, i, j}$ is the number of rearrangements of i zeroes and $n-i$ ones such that j zeroes never appear consecutively.

In the case where $\tau=123$, we can give a more explicit formula for $\operatorname{NCM}_{123}(t, x, y)$. That is, we can show

$$
\begin{align*}
\operatorname{NCM}_{123}(t, x, y) & =\sum_{n \geq 0} \frac{t^{n}}{n!} \sum_{\sigma \in \mathcal{N C} \mathcal{M}_{n}(123)} x^{\operatorname{cyc}(\sigma)} y^{\operatorname{cdes}(\sigma)} \tag{6}\\
& \left.=e^{x \ln \left(\frac{1}{\sum_{n \geq 0} \frac{f^{n}}{n}\left(\frac{y(1-t)}{1-y+y+y t^{2}} t^{n-1}\right)}\right)}{ }^{x}\right)^{x} \\
& \left.=\frac{1}{\sum_{n \geq 0} \frac{t^{n}}{n!}\left(\left.\frac{y(1-t)}{1-y t+y t^{2}}\right|_{t^{n-1}}\right)}\right)
\end{align*}
$$

We prove similar results for several other types of permutations and sets of permutations.
This is joint work with Jeffrey Remmel (University of California, San Diego) ${ }^{4}$.

[^0]
References

[1] I. Goulden and D. Jackson, Combinatorial Enumeration, John Wiley \& Sons Inc. New York 1983.
[2] A. Mendes and J.B. Remmel, Permutations and words counted by consecutive patterns, Adv. Appl. Math, 37 4, (2006) 443-480.

[^0]: ${ }^{4}$ Partially supported by NSF grant DMS 0654060.

