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In this paper, we study matching conditions within the cycle structure of a permu-
tation. Given a sequence σ = σ1 . . . σn of distinct integers, let red(σ) be the permuta-
tion found by replacing the ith largest integer that appears in σ by i. For example, if
σ = 2 7 5 4, then red(σ) = 1 4 3 2. Suppose that τ = τ1 . . . τj is a permutation in
Sj and σ is a permutation in Sn with k cycles C1 . . . Ck. We shall always write cycles
in the form Ci = (c0,i, . . . , cpi−1,i) where c0,i is the smallest element in Ci and pi is the
length of Ci and we arrange the cycles by decreasing smallest elements. That is, we ar-
range the cycles of σ so that c0,1 > · · · > c0,k. Then we say that σ has a cycle τ-match
(c-τ-match) if there is an i such that Ci = (c0,i, . . . , cpi−1,i) where pi ≥ j and an r such
that red(cr,icr+1,i . . . cr+j−1,i) = τ where we take indices of the form r + s modulo pi.
Let c-τ-mch(σ) be the number of cycle τ-matches in the permutation σ. For example, if
τ = 2 1 3 and σ = (1, 10, 9)(2, 3)(4, 7, 5, 8, 6), then 9 1 10 is a cycle τ-match in the first
cycle and 7 5 8 and 6 4 7 are cycle τ-matches in the third cycle so that c-τ-mch(σ) = 3.
Similarly, we say that τ cycle occurs in σ if there exists an i such that Ci = (c0,i, . . . , cpi−1,i)
where pi ≥ j and there is an r with 0 ≤ r ≤ pi − 1 and indices 0 ≤ i1 < · · · < ij−1 ≤ pi − 1
such that red(cr,icr+i1,i . . . cr+ij−1,i) = τ where the indices r + is are taken mod pi. We say

that σ cycle avoids τ if there are no cycle occurrences of τ in σ. For example, if τ = 1 2 3
and σ = (1, 10, 9)(2, 3)(4, 8, 5, 7, 6), then 4 5 7, 4 5 6, and 5 6 8 are cycle occurrences of τ
in the third cycle. We can extend of the notion of cycle matches and cycle occurrences to
sets of permutations in the obvious fashion. Given a set of permutations Υ ⊆ Sj, we let
CASn,k(Υ) (NCMSn,k(Υ)) denote the set of permutations σ ∈ Sn such that σ has k-cycles
and σ cycle avoids Υ (σ has no cycle Υ-matches). Similarly, we let Lca

m (Υ) (Lncm
m (Υ)) be the

set of m cycles γ in Sm such γ cycle avoids Υ (γ has no cycle Υ-matches).
Given a permutation σ = σ1 . . . σn ∈ Sn, we let des(σ) = |{i : σi > σi+1}|. We say that

σj is left-to-right minima of σ if σj < σi for all i < j. We let lrmin(σ) denote the number of
left-to-right minma of σ. Given a cycle C = (c0, . . . , cp−1) where c0 is the smallest element
in the cycle, we let cdes(C) = 1 + des(c0 . . . cp−1). Thus cdes(C) counts the number of
descent pairs as we traverse once around the cycle because the extra factor of 1 counts the
descent pair cp−1 > c0. For example if C = (1, 5, 3, 7, 2), then cdes(C) = 3 which counts
the descent pairs 53, 72, and 21 as we traverse once around C. By convention, if C = (c0)
is one-cycle, we let cdes(C) = 1. If σ is a permutation in Sn with k cycles C1 . . . Ck, then
we define cdes(σ) = ∑

k
i=1 cdes(Ci). We let cyc(σ) denote the number of cycles of σ.

The following theorem easily follows from the theory of exponential structures.

Theorem 1.

CAΥ(t, x, y) = 1 + ∑
n≥1

tn

n!

n
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ycdes(σ) = e
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tm
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m (Υ) ycdes(C)
, (1)

and

NCMΥ(t, x, y) = 1 + ∑
n≥1

tn

n!

n

∑
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tm
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It turns out that if τ ∈ Sj is a permutation that starts with 1, then we can reduce the
problem of finding NCMτ(t, x, y) to the usual problem of finding the generating function
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of permutations that have no τ-matches. For any permutation τ ∈ Sj, let NMn(τ) be the
set of σ ∈ Sn such that σ has no τ-matches and

NMτ(t, x, y) = ∑
n≥0

tn

n! ∑
σ∈NMn(τ)

xlrmin(σ)y1+des(σ).

Then we can show that if τ starts with 1, then

NCMτ(t, x, y) = NMτ(t, x, y). (3)

Using this fact, one can automatically refine a number of theorems on the literature on
consecutive pattern avoidance. For example, Goulden and Jackson [1] proved a generat-
ing funtion for permutations that have no 12 . . . k-matches which can be combined with
Theorem 1 to prove the following refinement of their result.

Theorem 2. If τ = 12 . . . k where k ≥ 2, then

NMτ(t, x, 1) =





1
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tki
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tki+1

(ki+1)!





x

. (4)

In fact using Theorem 1 and a theorem of Mendes and Remmel [2], we can show

Theorem 3. For k ≥ 2 and τ = 12 . . . k,

NCMτ(t, x, y) = ∑
n≥0

tn
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xcyc(σ)ycdes(σ) (5)

= e
x ln
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1
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)

where Rn,i,j is the number of rearrangements of i zeroes and n − i ones such that j zeroes never
appear consecutively.

In the case where τ = 123, we can give a more explicit formula for NCM123(t, x, y).
That is, we can show

NCM123(t, x, y) = ∑
n≥0
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We prove similar results for several other types of permutations and sets of permuta-
tions.

This is joint work with Jeffrey Remmel (University of California, San Diego)4.
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