Pattern matching in the cycle structures of permutations

Miles Jones

University of California, San Diego

In this paper, we study matching conditions within the cycle structure of a permutation. Given a sequence $\sigma = \sigma_1 \dots \sigma_n$ of distinct integers, let $red(\sigma)$ be the permutation found by replacing the *i*th largest integer that appears in σ by *i*. For example, if $\sigma = 2$ 7 5 4, then red(σ) = 1 4 3 2. Suppose that $\tau = \tau_1 \dots \tau_i$ is a permutation in S_i and σ is a permutation in S_n with k cycles $C_1 \dots C_k$. We shall always write cycles in the form $C_i = (c_{0,i}, \ldots, c_{p_i-1,i})$ where $c_{0,i}$ is the smallest element in C_i and p_i is the length of C_i and we arrange the cycles by decreasing smallest elements. That is, we arrange the cycles of σ so that $c_{0,1} > \cdots > c_{0,k}$. Then we say that σ has a cycle τ -match (*c*- τ -match) if there is an *i* such that $C_i = (c_{0,i}, \ldots, c_{p_i-1,i})$ where $p_i \ge j$ and an *r* such that $\operatorname{red}(c_{r,i}c_{r+1,i}\ldots c_{r+i-1,i}) = \tau$ where we take indices of the form r+s modulo p_i . Let c- τ -mch(σ) be the number of cycle τ -matches in the permutation σ . For example, if $\tau = 2\ 1\ 3$ and $\sigma = (1,10,9)(2,3)(4,7,5,8,6)$, then 9 1 10 is a cycle τ -match in the first cycle and 7 5 8 and 6 4 7 are cycle τ -matches in the third cycle so that c- τ -mch(σ) = 3. Similarly, we say that τ cycle occurs in σ if there exists an *i* such that $C_i = (c_{0,i}, \ldots, c_{p_i-1,i})$ where $p_i \ge j$ and there is an r with $0 \le r \le p_i - 1$ and indices $0 \le i_1 < \cdots < i_{j-1} \le p_i - 1$ such that $\operatorname{red}(c_{r,i}c_{r+i_1,i}\ldots c_{r+i_{i-1},i}) = \tau$ where the indices $r+i_s$ are taken mod p_i . We say that σ cycle avoids τ if there are no cycle occurrences of τ in σ . For example, if $\tau = 1.2.3$ and $\sigma = (1, 10, 9)(2, 3)(4, 8, 5, 7, 6)$, then 4 5 7, 4 5 6, and 5 6 8 are cycle occurrences of τ in the third cycle. We can extend of the notion of cycle matches and cycle occurrences to sets of permutations in the obvious fashion. Given a set of permutations $Y \subseteq S_{i'}$ we let $CAS_{n,k}(Y)$ ($NCMS_{n,k}(Y)$) denote the set of permutations $\sigma \in S_n$ such that σ has k-cycles and σ cycle avoids Y (σ has no cycle Y-matches). Similarly, we let $\mathcal{L}_m^{ca}(Y)$ ($\mathcal{L}_m^{ncm}(Y)$) be the set of *m* cycles γ in S_m such γ cycle avoids Y (γ has no cycle Y-matches).

Given a permutation $\sigma = \sigma_1 \dots \sigma_n \in S_n$, we let $des(\sigma) = |\{i : \sigma_i > \sigma_{i+1}\}|$. We say that σ_j is *left-to-right minima* of σ if $\sigma_j < \sigma_i$ for all i < j. We let $lrmin(\sigma)$ denote the number of left-to-right minma of σ . Given a cycle $C = (c_0, \dots, c_{p-1})$ where c_0 is the smallest element in the cycle, we let $cdes(C) = 1 + des(c_0 \dots c_{p-1})$. Thus cdes(C) counts the number of descent pairs as we traverse once around the cycle because the extra factor of 1 counts the descent pairs 53, 72, and 21 as we traverse once around *C*. By convention, if $C = (c_0)$ is one-cycle, we let cdes(C) = 1. If σ is a permutation in S_n with k cycles $C_1 \dots C_k$, then we define $cdes(\sigma) = \sum_{i=1}^k cdes(C_i)$. We let $cyc(\sigma)$ denote the number of cycles of σ .

The following theorem easily follows from the theory of exponential structures.

Theorem 1.

$$CA_{Y}(t,x,y) = 1 + \sum_{n \ge 1} \frac{t^{n}}{n!} \sum_{k=1}^{n} x^{k} \sum_{\sigma \in \mathcal{CAS}_{n,k}(Y)} y^{\operatorname{cdes}(\sigma)} = e^{x \sum_{m \ge 1} \frac{t^{m}}{m!} \sum_{C \in \mathcal{L}_{m}^{ca}(Y)} y^{\operatorname{cdes}(C)}}, \quad (1)$$

and

$$NCM_{Y}(t,x,y) = 1 + \sum_{n\geq 1} \frac{t^{n}}{n!} \sum_{k=1}^{n} x^{k} \sum_{\sigma\in\mathcal{NCMS}_{n,k}(Y)} y^{\operatorname{cdes}(\sigma)} = e^{x\sum_{m\geq 1} \frac{t^{m}}{m!} \sum_{C\in\mathcal{L}_{m}^{ncm}(Y)} y^{\operatorname{cdes}(C)}}.$$
 (2)

It turns out that if $\tau \in S_j$ is a permutation that starts with 1, then we can reduce the problem of finding $NCM_{\tau}(t, x, y)$ to the usual problem of finding the generating function

of permutations that have no τ -matches. For any permutation $\tau \in S_j$, let $\mathcal{NM}_n(\tau)$ be the set of $\sigma \in S_n$ such that σ has no τ -matches and

$$NM_{\tau}(t, x, y) = \sum_{n \ge 0} \frac{t^n}{n!} \sum_{\sigma \in \mathcal{NM}_n(\tau)} x^{\operatorname{lrmin}(\sigma)} y^{1 + \operatorname{des}(\sigma)}.$$

Then we can show that if τ starts with 1, then

$$NCM_{\tau}(t, x, y) = NM_{\tau}(t, x, y).$$
(3)

Using this fact, one can automatically refine a number of theorems on the literature on consecutive pattern avoidance. For example, Goulden and Jackson [1] proved a generating function for permutations that have no 12...*k*-matches which can be combined with Theorem 1 to prove the following refinement of their result.

Theorem 2. If $\tau = 12 \dots k$ where $k \ge 2$, then

$$NM_{\tau}(t,x,1) = \left(\frac{1}{\sum_{i \ge 0} \frac{t^{ki}}{(ki)!} - \frac{t^{ki+1}}{(ki+1)!}}\right)^{x}.$$
(4)

In fact using Theorem 1 and a theorem of Mendes and Remmel [2], we can show

Theorem 3. For $k \ge 2$ and $\tau = 12 \dots k$,

$$NCM_{\tau}(t, x, y) = \sum_{n \ge 0} \frac{t^n}{n!} \sum_{\sigma \in \mathcal{NCM}_n(\tau)} x^{cyc(\sigma)} y^{cdes(\sigma)}$$

$$= e^{x \ln\left(\frac{1}{\sum_{n \ge 0} \frac{t^n}{n!} \sum_{i \ge 0} (-1)^{i_{\mathcal{R}_{n-1},i,k-1}y^{n-i}}\right)}$$
(5)

where $\Re_{n,i,j}$ is the number of rearrangements of *i* zeroes and n - i ones such that *j* zeroes never appear consecutively.

In the case where $\tau = 123$, we can give a more explicit formula for $NCM_{123}(t, x, y)$. That is, we can show

$$NCM_{123}(t, x, y) = \sum_{n \ge 0} \frac{t^n}{n!} \sum_{\sigma \in \mathcal{NCM}_n(123)} x^{cyc(\sigma)} y^{cdes(\sigma)}$$

$$= e^{x \ln\left(\frac{1}{\sum_{n \ge 0} \frac{t^n}{n!} \left(\frac{y(1-t)}{1-yt+yt^2}|_{t^{n-1}}\right)}\right)}$$

$$= \left(\frac{1}{\sum_{n \ge 0} \frac{t^n}{n!} \left(\frac{y(1-t)}{1-yt+yt^2}|_{t^{n-1}}\right)}\right)^x$$
(6)

We prove similar results for several other types of permutations and sets of permutations.

This is joint work with Jeffrey Remmel (University of California, San Diego)⁴.

⁴Partially supported by NSF grant DMS 0654060.

References

- [1] I. Goulden and D. Jackson, *Combinatorial Enumeration*, John Wiley & Sons Inc. New York 1983.
- [2] A. Mendes and J.B. Remmel, Permutations and words counted by consecutive patterns, Adv. Appl. Math, **37** 4, (2006) 443-480.