Pattern avoidance in $\Pi_{n} \prec C_{k}$

Pattern avoidance in the symmetric group S_{n} has provided a number of useful connections between seemingly unrelated problems from stack-sorting to Schubert varieties. Recent work $[2,4,5]$ has generalized these results to $S_{n} 2 C_{k}$, the objects of which can be viewed as "colored permutations".

Another body of research that has grown from the study of pattern avoidance in permutations is pattern avoidance in Π_{n}, the set of set partitions of $[n]$. Pattern avoidance in set partitions is a generalization of the well studied notion of noncrossing partitions [3].

Motivated by recent results in pattern avoidance in $S_{n} \imath C_{k}$ we provide a catalog of initial results for pattern avoidance in colored partitions, $\Pi_{n} 々 C_{k}$. We note that colored set partitions are not a completely new concept. Signed (2-colored) set partitions appear in the work of Björner and Wachs involving the homology of partition lattices [1]. However, we seek to study these objects in a new enumerative context.
This is joint work with Lara Pudwell.

References

[1] Anders Björner and Michelle L. Wachs, Geometrically constructed bases for the homology of partition lattices of types A, B, and D, Elec. J. Comb. 11(2) (2004), \#R3.
[2] Eric Egge, Restricted Colored Permutations and Chebyshev Polynomials, Discrete Mathematics 307 (2007), 1792-1800.
[3] Germain Kreweras, Sur les partitions non croisées d'un cycle, Discrete Mathematics 1 (1972), 333-350.
[4] Toufik Mansour, Pattern Avoidance in Coloured Permutations, Séminaire Lothaningien de Combinatorica 46 (2001), Article B46g.
[5] Toufik Mansour and Julian West, Avoiding 2-Letter Signed Patterns, Séminaire Lothaningien de Combinatorica 49 (2002), Article B49a.

