Expanding permutation statistics as sums of permutation patterns

Anders Claesson
Reykjavik University
Any permutation statistic $f: \mathfrak{S} \rightarrow \mathbb{C}$ may be represented uniquely as a, possibly infinite, linear combination of (classical) permutation patterns: $f=\Sigma_{\tau} \lambda(\tau) \tau$. To provide explicit expansions for certain statistics, we introduce a new type of permutation patterns: Intuitively, such a pattern $p=(\pi, R)$ counts occurrences of the permutation pattern π with additional restrictions specified by R on the relative position of the entries of the occurrence. We show that, for any pattern $p=(\pi, R)$, we have $\lambda(\tau)=(-1)^{|\tau|-|\pi|} p^{\star}(\tau)$ where $p^{\star}=\left(\pi, R^{c}\right)$ is the pattern with the same underlying permutation as p but with complementary restrictions. We use this result to expand some well known permutation statistics, such as the number of left-to-right maxima, descents, excedances, fixed points, strong fixed points, and the major index.
This is joint work with Petter Brändén (KTH, Sweden).

