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Our goal is to provide automatic methods to enumerate permutation classes. More
precisely, in [1], the authors explain how to compute the generating function of a permuta-
tion class whenever this class contains a finite number of simple permutations. In [5, 4, 6],
the authors prove that determining if a class given by its basis contains a finite number of
simple permutations is decidable. The proof relies on a subclass of permutations called
pin-permutations. In [3], we characterize the pin-permutations in terms of decomposition
trees and give their generating function. In [2], we use this characterization to give a
O(n ln n) algorithm to determine if a wreath-closed class of permutations given by its ba-
sis contains a finite number of simple permutations. This result was obtained by proving
that determining if a simple permutation contains a given simple pin-permutation can be
reduced to a problem on words, namely determining if a word is a factor of another one.

In this article, we prove a polynomial algorithm to determine if a general permuta-
tion class contains a finite number of simple permutations. In [6], the authors reduce the
problem of containing a finite number of simple permutation to a co-finiteness problem
on regular languages. These languages are given by nondeterministic finite automata
leading to a exponential complexity in the decision procedure. We use the same en-
coding of permutations by words. Our characterization of pin-permutations obtained
in [3] allows us to provide an explicit description of the set of words associated to any
pin-permutation. This description is essential in the efficient construction of complete
deterministic automata -instead of nondeterministic ones- for which the time complexity
of the co-finiteness problem is linear.

Putting all together we can prove the following theorem and also provide an effective
algorithm:

Theorem 1. Deciding if a permutation class C = Av(σ(1), σ(2), . . . , σ(k)) contains a finite num-
ber of simple permutations can be done in time O(n3k) where n is the size of the largest permutation
in the basis.

This is joint work with Frédérique Bassino, Adeline Pierrot and Dominique Rossin.
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[6] Robert Brignall, Nik Ruškuc, and Vincent Vatter. Simple permutations: decidability
and unavoidable substructures. Theoret. Comput. Sci., 391(1-2):150–163, 2008.

8


