ANOTHER LOOK AT BIJECTIONS FOR PATTERN-AVOIDING PERMUTATIONS

Bijections between $S_{n}(321)$ and $S_{n}(132)$ which preserve certain permutation statistics have received considerable attention in the literature. Robertson defined, through an iterative process, a remarkable natural bijection between these two sets. For any $\sigma \in$ $S_{n}(321)$ this bijection repeatedly removes the 132-pattern $\sigma_{x} \sigma_{y} \sigma_{z}$ that is smallest in the lexicographic ordering of positions (x, y, z) and replaces it with the 321-pattern $\sigma_{y} \sigma_{z} \sigma_{x}$ until $\sigma \in S_{n}(132)$. At the 2005 Integers conference he conjectured that this bijection, Γ, is fixed point preserving. Bloom and Saracino affirmed this conjecture and also showed that Γ preserves the number of excedances. It was also shown that Γ can also be defined such that at each iteration one removes the 132-pattern that is smallest either in terms of positions (x, y, z) or in terms of values $\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$. The proof depended on first showing that $\Gamma\left(\sigma^{-1}\right)=(\Gamma(\sigma))^{-1}$ for all $\sigma \in S_{n}(321)$. Due to the iterative nature of Γ the proof of this fact was quite technical.

Here we will give a pictorial non-iterative definition of Γ. We accomplish this through a new combinatorial object, which we call a permutation template, that generalizes the notion of a permutation diagram. This new definition results in clearer and independent proofs that Γ commutes with inverses and preserves fixed points and excedances. Additionally, permutation templates provide the necessary structure to better understand why Γ may be defined in terms of any combination of position or value based 132-pattern replacements.

