Some general results for even-Wilf-equivalence

Andrew M. Baxter ${ }^{1}$ Rutgers University
For a set of (classical) patterns B, let $\mathcal{S}_{n}(B)$ be the permutations in the symmetric group \mathcal{S}_{n} that avoid every pattern in B. Let \mathcal{E}_{n} and \mathcal{O}_{n} denote the sets of even and odd, respectively, permutations in \mathcal{S}_{n}; let $\mathcal{E}_{n}(B)=\mathcal{S}_{n}(B) \cap \mathcal{E}_{n}$ and $\mathcal{O}_{n}(B)=\mathcal{S}_{n}(B) \cap \mathcal{O}_{n}$, and let $E_{n}(B)=\left|\mathcal{E}_{n}(B)\right|$ and $O_{n}(B)=\left|\mathcal{O}_{n}(B)\right|$. We say that two sets of classical patterns B and C are even-Wilf equivalent (or \mathcal{E}_{n}-Wilf equivalent) if, for every $n \geq 1, E_{n}(B)=E_{n}(C)$; we then write $B \sim_{\mathcal{E}_{n}} C$ (and we write $B \sim_{\mathcal{S}_{n}} C$ for classical Wilf equivalence). Here we consider the problem of determining the even-Wilf equivalences between the singleton subsets of \mathcal{S}_{n}. In particular, we prove general even-Wilf equivalences that parallel previously known families of Wilf equivalences and involution-Wilf equivalences.

Initial work was done by Simion and Schmidt for $B \subseteq \mathcal{S}_{3}$; their work implies that $123 \sim_{\mathcal{E}_{n}} 231 \sim_{\mathcal{E}_{n}} 312$ and $132 \sim_{\mathcal{E}_{n}} 213 \sim_{\mathcal{E}_{n}} 321$. However, it is not the case in general that $\sigma \sim_{\mathcal{E}_{n}} \tau$ whenever $\sigma \sim_{\mathcal{S}_{n}} \tau$ and σ and τ have the same parity. This is demonstrated by the two even patterns 1234 and 4321: $1234 \sim_{\mathcal{S}_{n}} 4321$, but $E_{6}(1234)=258$ and $E_{6}(4321)=255$.

For patterns $\sigma \in \mathcal{S}_{k}$ and $\tau \in \mathcal{S}_{\ell}$, let $\sigma \oplus \tau \in \mathcal{S}_{k+\ell}$ be their direct sum $\sigma_{1} \sigma_{2} \ldots \sigma_{k}(k+$ $\left.\tau_{1}\right)\left(k+\tau_{2}\right) \ldots\left(k+\tau_{\ell}\right)$. Backelin, West, and Xin showed that $k \ldots 21 \oplus \sigma \sim_{\mathcal{S}_{n}} 12 \ldots k \oplus \sigma$. One proof of this used an intermediate result that $k(k-1) \ldots 21 \oplus \sigma \sim_{\mathcal{S}_{n}}(k-1)(k-$ 2) $\ldots 21 k \oplus \sigma$. We show that this result extends to $k(k-1) \ldots 21 \oplus \sigma \sim_{\mathcal{E}_{n}}(k-1)(k-$ 2) $\ldots 21 k \oplus \sigma$ whenever k is odd. This allows us to classify all patterns $\sigma \in \mathcal{S}_{4}$ according to even-Wilf equivalence, and it shows a parallel between even-Wilf equivalence and both classical Wilf equivalence and involution-Wilf equivalence. However, because evenWilf equivalence is not respected by all the symmetries of the square, illustrated above by $1234 \psi_{\mathcal{E}_{n}} 4321$, this result does not complete the classification of $\sigma \in \mathcal{S}_{5}$ according to even-Wilf equivalence.

This is joint work with Aaron D. Jaggard.

[^0]
[^0]: ${ }^{1}$ Supported in part by NSA grant H98230-09-1-0014.

