Some general results for even-Wilf-equivalence

Andrew M. Baxter¹

Rutgers University

For a set of (classical) patterns B, let $S_n(B)$ be the permutations in the symmetric group S_n that avoid every pattern in B. Let \mathcal{E}_n and \mathcal{O}_n denote the sets of even and odd, respectively, permutations in S_n ; let $\mathcal{E}_n(B) = S_n(B) \cap \mathcal{E}_n$ and $\mathcal{O}_n(B) = S_n(B) \cap \mathcal{O}_n$, and let $E_n(B) = |\mathcal{E}_n(B)|$ and $O_n(B) = |\mathcal{O}_n(B)|$. We say that two sets of classical patterns Band C are *even-Wilf equivalent* (or \mathcal{E}_n -*Wilf equivalent*) if, for every $n \ge 1$, $E_n(B) = E_n(C)$; we then write $B \sim_{\mathcal{E}_n} C$ (and we write $B \sim_{\mathcal{S}_n} C$ for classical Wilf equivalence). Here we consider the problem of determining the even-Wilf equivalences between the singleton subsets of S_n . In particular, we prove general even-Wilf equivalences that parallel previously known families of Wilf equivalences and involution-Wilf equivalences.

Initial work was done by Simion and Schmidt for $B \subseteq S_3$; their work implies that $123 \sim_{\mathcal{E}_n} 231 \sim_{\mathcal{E}_n} 312$ and $132 \sim_{\mathcal{E}_n} 213 \sim_{\mathcal{E}_n} 321$. However, it is not the case in general that $\sigma \sim_{\mathcal{E}_n} \tau$ whenever $\sigma \sim_{\mathcal{S}_n} \tau$ and σ and τ have the same parity. This is demonstrated by the two even patterns 1234 and 4321: 1234 $\sim_{\mathcal{S}_n} 4321$, but $E_6(1234) = 258$ and $E_6(4321) = 255$.

For patterns $\sigma \in S_k$ and $\tau \in S_\ell$, let $\sigma \oplus \tau \in S_{k+\ell}$ be their direct sum $\sigma_1 \sigma_2 \dots \sigma_k (k + \tau_1)(k + \tau_2) \dots (k + \tau_\ell)$. Backelin, West, and Xin showed that $k \dots 21 \oplus \sigma \sim_{S_n} 12 \dots k \oplus \sigma$. One proof of this used an intermediate result that $k(k-1) \dots 21 \oplus \sigma \sim_{S_n} (k-1)(k-2) \dots 21k \oplus \sigma$. We show that this result extends to $k(k-1) \dots 21 \oplus \sigma \sim_{\mathcal{E}_n} (k-1)(k-2) \dots 21k \oplus \sigma$ whenever k is odd. This allows us to classify all patterns $\sigma \in S_4$ according to even-Wilf equivalence, and it shows a parallel between even-Wilf equivalence and both classical Wilf equivalence and involution-Wilf equivalence. However, because even-Wilf equivalence is not respected by all the symmetries of the square, illustrated above by 1234 $\gamma_{\mathcal{E}_n} 4321$, this result does not complete the classification of $\sigma \in S_5$ according to even-Wilf equivalence.

This is joint work with Aaron D. Jaggard.

¹Supported in part by NSA grant H98230-09-1-0014.