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Preface and Acknowledgements

The primary aim of this monograph is to explore some mod-
els which have been central in the development of mathematical
modelling and which exemplify the process of using mathematics
to understand the world. I wanted to show how mathematics can
be, and is, used as a speculative tool. Computer exploration makes
this exploratory side of mathematics accessible to students with a
solid high school background. I hope, of course, that there is enough
material so that the better student will be able to create his or her
own models, but this is not my main purpose.

There are a number of reasons I feel that this apprach is of value.
First, there are a number of good books devoted to constructing
simple models and I think I have relatively little to add. Secondly,
I think it is important to see truly significant examples of models
— such models have really shaped our thinking. If one thinks in
terms of the distinction between a course devoted to reading great
literature and a “how to write” course, then the approach taken here
is analogous to that in the former. (Both courses are necessary.)
Third, I think it is important to stress the importance of evaluating
assumptions — this is the sort of thing an informed citizen needs to
be able to do. The fitting of coefficients to get the best agreement
between model and reality is not something our average student is,
or ever will be, called upon to do.

We focus primarily on dynamical systems, which three centuries
of experience have shown to be the most useful class of mathematical
models. Historically, the discovery and use of dynamical systems
have been intimately bound up with the calculus and considerable
knowledge of calculus has been required to use them effectively.
The current monograph supposes no knowledge of calculus. In-
stead, we systematically use the computer to explore the behavior
of dynamical systems. We supply sample programs together with a
detailed explication of what the program is doing, in the hope that
an interested reader will be able to modify these programs and write
his or her own. Classroom experience has shown that this goal is
not too ambitious. I also wanted to to convey the current activity in



the area of dynamical systems and give the reader a sense of what
it is that mathematicians do and the interplay between mathematical
research and the ways in which we perceive our world.

The material in this monograph and its treatment owe much
to my colleagues. I would particularly like to single out those in
the Five College Calculus in Context project: Harriet Pollatsek and
Lester Senechal of Mount Holyoke College, James Callahan of Smith
College, David Cox of Amherst College, Ken Hoffman of Hampshire
College and Frank Wattenberg of the University of Massachusetts.
Virtually everything that is novel in this monograph is due to them.
I would also like to thank the Sloan New Liberal Arts program
for creating a climate on campus which encouraged the curricular
experimentation of which this monograph is a result. Support from
the NLA program allowed me to take the time to successively rework
the course so as to make it accessible to almost all first year students.
Sadly, I cannot even take credit for the idea that an honest course
was possible at this level: the idea is due to the directors of the NLA
program, John Truxal and Mike Visich of the State University of New
York at Stony Brook, who also provided support and encouragement,
and to Ken Hoffman. To all these people, to Sam Goldberg of
Oberlin who provided much thoughtful criticism, and to five groups
of students at Mount Holyoke who put up with successive iterations
of this material, thanks.

Lastly, especial thanks to Mary, for being her inimitable self,
and to my children, Seamus, Brendan, Sarah and Kathleen, for being
themselves. I dedicate this monograph to them.
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Chapter 1 — Of Snakes and Birds

What is Mathematical Modelling?

Mathematical modelling is the process of trying to model some
“chunk of reality”, perhaps some situation or some constellation
of phenomena, in mathematics with a view to using mathematical
reasoning to explain, explore, or predict aspects of that reality.

By a mathematical model we mean a “dictionary” which sets
up a correspondence between the chunk of reality and a set of math-
ematical objects, together with a set of “operations or rules" which
allow one to pass between mathematical objects in the set. This
definition is necessarily fuzzy: we will elaborate on it as we go
along.

We intend to let the main ideas emerge from an examination of
successful models. The last decade has seen a growing awareness of
the environmental and ecological changes brought about by humans.
Accordingly, we begin with an examination of some simple ecolog-
ical models which have shed light on the ways in which different
species can interact.

Snakes on Guam

Consider first the island of Guam, a small U .S . protectorate
half way been New Guinea and Japan. Guam is 30 miles long by
6-10 miles wide, home to 110,000 people. The main industries are
the military, tourism, textiles, and petrochemical refining. It is an
idyllic place, with temperatures between 72°F and 88°F year round,
gentle green hills and sandy beaches.

In 1950, Guam was home to 18 species of birds. The forests
were alive with their songs. In the early 1970’s, biologists noted a
sharp decline in the numbers of some species. By the late 1970’s
it was obvious to all that something serious was happening. Fewer



and fewer birds of any type were observed. By the early 1980’s, the
Fish and Wildlife Service of the U .S . Department of the Interior
started to investigate in earnest and several species were put on the
endangered list — sadly, however, most of the birds on the list were
already extinct. Today, there are almost no birds at all on Guam.

What was the cause? In Hawaii many birds had died has a result
of an avian virus, and it was widely felt that some such virus was
causing the destruction. In 1984, a young Fisheries biologist, Julie
Savidge, discovered that the cause was something rather different:
the brown tree snake, a snake introduced to Guam, apparently by
accident, in the late 1940’s or early 1950’s (the first snakes were
sighted in 1952).

The brown tree snake is native to New Guinea and the north-
eastern coast of Australia. Growing to lengths of over 8 feet, it is
nocturnal, very aggressive, and a superb climber. Since the snake is
nocturnal and sleeps during the day, it is difficult to spot.

Nevertheless, it was apparent by the end of the 1970’s and
the early 1980’s that the number of snakes had vastly increased.
The snake would climb the guy wires to power poles, seeking birds
nesting on top of the poles, and often short out transformers. From
1978 to 1982, the number of power outages caused by the snake
increased fivefold from less than 20 to nearly 100, causing millions
of dollars in damages. In 1985, in what can only be considered as a
gesture of defeat, one of the main power lines was shut off at night,
effectively abandoning it to the snakes.

The snake is mildly venomous — having fangs, but far back in
its mouth, so that it has to really chew to inject its venom. At this
writing, no deaths from the snake have been reported. Nevertheless,
about one in a thousand visits to hospital emergency rooms on Guam
are for brown tree snake bites. One hospital treated about 50 victims
bitten by the snake last year, many of them children. The snake
has been found everywhere — it can crawl into houses, entering via
vents in roofs, open windows, and sewer lines. In one house, it bit a
six-week old infant that was sleeping between its parents. In another,
parents found their two month old son in his crib with a five foot
snake tightly coiled around his neck and repeated bites on his arms



and legs.

Modelling the Snake Population

It is clear that the snake population underwent a period of ex-
plosive growth in the late 70’s and early 80’s. In order to understand
how the snake population might grow, we let = be the number of
snakes on the island. We are interested in how z varies from year
to year. Let =’ denote the rate of change of = per year. Thus,
z = 10000, z’ = 3 would mean that there are 10000 snakes and the
amount is increasing by 3 snakes/year. If the number of snakes were
decreasing by 3 snakes/year, we would write z’ = —3.

One could be a little more subtle, and let x be the total weight
of the snakes, measured in units of average snake mass. Since
the average brown snake weighs about one kilogram, = will be the
number of kilograms of snakes, which is approximately the number
of snakes. The advantage of this interpretation is that there is no
trouble saying what it means for z or z’ to be 3.5, for example. We
will continue to think of = as the number of snakes, but if fractional
values of snakes bother you, you might consider that we have adopted
this convention.

Since Guam is isolated, we don’t have to worry about snakes
immigrating or emigrating. The rate of change z’ of the snakes will
be equal to the average number of births per year minus the average
number of deaths of per year. Not a great deal is known about the
reproductive patterns of the brown snake. As a first approximation
we might imagine that both the number of deaths and the number of
births is roughly proportional to the number of snakes (that is, twice
as many snakes would result in twice as many deaths and twice as
many births). Thus, the rate of change of the number of snakes is
proportional to the number present. (This means that if, for example,
the net increase in a population of 100 snakes is ten per year, then
a population of 300 would increase by thirty in a year.) In terms
of formulas, our first approximation means that ' = ax where a is
some positive constant which would need to be measured.

We can try to estimate the number a. A female snake held in
captivity was observed to lay 4 eggs (none of which hatched). Let’s



be conservative and say that a female snake in the wild on Guam
will give rise to one snake that makes it to adulthood a year (the
number may well be more: on Guam there are no natural predators
which feed on the snakes — there are also indications that a female
can lay clutches of up to 12 eggs twice a year). The brown snake
lives about ten years, so we may as well assume that one tenth of
the snakes die per year. The number will be slightly higher: some
snakes are electrocuted, run over by cars, or killed by humans. Let’s
ignore this, since this number is small and probably balanced by the
fact that the average snake actually lives longer thdn ten years

Let’s suppose that half the snakes are female. Then, in a popu-
lation of x snakes, the number of females will be %m On average,
each will give rise to one snake per year, so we will have %m new
snakes per year. The number of deaths will be ll—orc snakes per year.
Thus the rate of change of the snakes will be

(oL
7=(3- 1)

and a = § — 5 = .5 —.1 = .4. This approximation is clearly
unrealistic if there are a lot of snakes. (In fact, the positive growth
rate means that the number of snakes will increase without bound.)
They’ll eat all the food and start to starve. Moreover, if they are
really crowded, disease will spread more easily, and it’s reasonable
to assume that the death rate will go up. After some point, the
number of brown snakes will start to decrease, so rate of change will
be negative. (this number might be very high — there are lots of brown
snakes on Guam and their numbers don’t seem to be declining). How
can we take this into account?

There are a number of different plausible ways and one cannot
say a priori what’s best — one would have to consult an ecologist and
even then the answer might very well be equivocal. In the case of the
brown tree snake, not enough is known about it. With this cautionary
note in mind, let’s see what sort of equation has the property that
the rate of change is positive when z is small, and negative when

z is large. Again, for definiteness, let’s say that the population will



start to decrease when x is bigger than 1,000,000 say. (In some areas
there are as many as 30,000 per square mile; however, the average
density seems to be around 5000 snakes per square mile. As Guam
has an area of about 200 square miles, this gives a total population of
1,000,000, which is a lot of snakes!!) Probably the simplest quantity
that is positive when z is smaller than 1,000,000 and negative when
z is larger is 1000000 — z. Since we want the rate of change to be
proportional to z when z is small, we can’t write 2’ = 1000000 — =
(there are other reasons that this is nonsense: among other things,
it says that the closer z is to 0, the more the population approaches
a growth rate of 1,000,000 snakes/year, which is absurd.) A better
idea is to consider the quantity 1 — (2/1000000). This is positive
for z < 1,000,000 and negative for z > 1,000,000. We still can’t
write ' = 1 — (z/1000000) because z’ is not proportional to z for
small z (in fact, this equation would imply that a population of zero
snakes has a growth rate of one snake/year, a clear absurdity — the
snakes are bad, but not that bad!). A good alternative is to write

' = .4z(1 — .000001z). (1)
Upon multiplying through, we get
' = .4z — .0000004z2. (1)

For = small the first term will be much bigger than the second and
the rate of change of the population will be roughly proportional to
z with a rate of increase close to .4z snakes/year. (If for example,
x = 1000, the first term would be 400 and the second term .4, so
that ' = 399.6 is very nearly .4z = 400; the approximation would
be even better if x were less than 1000.) From the first form of
the equation, we see that the population will grow (that is, z’ > 0)
as long as z is less than 1,000,000. When z is equal to 1,000,000,
we will have £’ = 0, so the population will not change. When
z > 1,000,000, we will have ' < 0, so that the population will
decrease. This suggests that the population will level off at 1,000,000
individuals.



Here is another interpretation of the above equation. We can
think of the term proportional to z? as a ‘crowding’ factor. This
comes from the fact that, to a first approximation, we can think of
the number of encounters between two individuals in a population of
z individuals as proportional to z2. (The reason is that the number
of ways you can choose 2 individuals out of a population of z
individuals is z(xz — 1)/2. The first individual can be chosen in z
different ways and the second in = — 1 different ways, so there are
z(z —1) different ways to choose two individuals if one distinguishes
between which is chosen first and which second. If one does not
distinguish between the first and second choices, then the number of
ways to choose is z(z — 1)/2 and, for z large, this is pretty close to
z2/2). This approximation will be valid even if we think of z as the
total mass of individuals in units of average individual size, because
z is close to the actual number of individuals). Now, the rate that
disease is spread is roughly proportional to the number of contacts,
as is the number of times two snakes will get to the same bird. So,
we can think of equation (1) as saying that the rate of change of the
population is proportional to the number of individuals decreased by
a crowding factor proportional to the square of the population.

Other Models?

Before proceeding, we want to emphasize that we arrived at
equation (1) (or, equivalently, equation (1’)) by taking the simplest
mathematical expressions consistent with the suppositions that the
population increases at the rate of .4 snakes/year times the population
when the population is small and decreases once the population
exceeds 1,000,000. There are lots of other equations which are
consistent with these suppositions. For example, we might have

' = .4z(1 - .000001z)3

or
, Az

¥ = 1000001z



or something even more complicated. It is reasonable to choose the
simplest possible mathematical expressions when we lack other data,
but it is irresponsible to assume that reality must be that way.

Logistic Growth

Equation (1’) has the general form
' = ax — bz? (2)

where a and b are positive constants. This equation turns out to cap-
ture certain features common to many populations. Because of this,
and because it is simple, it plays an important role in mathematical
ecology. We can rewrite equation 2 as

!
= az(l — —
' = az( am)

or, even more suggestively, as

T
a/b

= aa:(l —

We see that the population will increase (that is, z' > 0) as long as the
population is less than ¢. It will decrease (z' < 0) if the population
is greater than ¢ and it will remain the same if z = §. (It is clear
that to make biological sense, we must have b much smaller that
a.) Another feature is that when z is small, the population increase
will be roughly proportional to the population, each individual con-
tributing on average a individuals per year or other time unit (from
which it is clear that a should be small). Equation (2) is called
the logistic model of population growth. When a population grows
in accordance with equation (2), we say that it grows logistically
with growth rate a and carrying capacity ¢. The carrying capacity
represents the maximum number of individuals the environment can
support.



The Number of Snakes over Time

Equation (1’) allows us to say, in principle at least, how many
snakes there are at any time, once we know the number of snakes
at a given time. To see this, imagine that z = 100 at some time.
Then according to equation 1’, the rate of change z’ of the number
of snakes is

4 x 100 — .0000004 x (100)? = 40 — .0004 = 39.9996

snakes per year. Thus, after one year, we’d expect to have 139.9996
snakes (our original 100, plus the change of 39.9996). If you like,
you interpret the fractional numbers as referring to weight. We hasten
to point out that here, and in what follows, we are only carrying the
decimal places so that you can check the computations —in actual fact,
we have made so many assumptions that it is ridiculous to preténd
that we’re getting anything close to three or four place decimal point
accuracy. At this time, the rate of change of the number of snakes
(using equation 1’ again) would be

z' = .4 x 139.9996 — .0000004 x (139.9996)% = 55.992

snakes per year.

So, at the end of the second year, we’d have z = 140.000 +
55.992 = 195.992 snakes and the rate of change of the number of
snakes would be

' = .4 x 195.992 — .0000004 x (195.992)% = 78.381

snakes per year.

At the end of the third year the number of snakes would be
195.992 + 78.381 = 274.373. This computation could easily be
continued to give us a reading for the number of snakes as many
years ahead into the future as we desire.

Before going wild, and figuring out how many snakes there will
be 10, 20, 30, ... years later, let us note that the computation above
isn’t quite right. Do you see why?



The reason is that the rate of change of the snakes changes
whenever the number of snakes changes. Our computation hasn’t
taken this into account — in fact, we’ve tacitly assumed that the
rate of growth of the number of snakes remains constant throughout
the year. Consider, for example, what happens to the number of
snakes between the end of the second year and the end of the third
year. Assuming that there were 195.992 snakes at the end of the
second year, we computed that ' = 78.381 snakes per year at the
end of the second year (the end of the second year is, of course,
the same as the beginning of the third year). We then used these
numbers to get the number of snakes at the end of the third year
by assuming that the number of snake¢s grew at the constant rate
of 78.381 snakes per year throughout the third year. However,
halfway through the third year, the number of snakes would have
been at least

1
195.992 + 3 years X 78.381 snakes per year = 235.183 snakes.

Hence, the rate of change would have been
4 x 235.183 4 .0000004 x (235.183)% = 94.095 snakes per year,

which is quite a bit higher than it was at the beginning of the year. If
we’d used this number to estimate the number of snakes at the end
of the third year, we’d get at least

1
235.183 + 3 years X 94.095 snakes per year = 282.230 snakes,

which is different than the number 274.373 computed above!

In fact, the computation we have just done suffers from exactly
the same defect we pointed out earlier. Namely, it assumes that the
rate of change of the number of snakes is constant for half a year.
In actual fact, after even only a month, the number of snakes will
have increased and, hence, the rate of change will be different



our estimate does not take this into account. We could compute the
number of snakes after each month.

If z¢ is the number of snakes at some time, then the rate of
change of the snakes

= .4z — .0000004z% snakes/year.

Thus, after one month there would be

1
Ty + —=zf = To + —(.4z¢ — .0000004z2) (3)

12 12(
snakes. We can then take this as our new value of =y and compute
the number of snakes a month later still and so on.

Of course, we are assuming in equation (3) that the rate of
change is constant over a month, which isn’t the case. It’s easy to
modify equation (3) to assume that the rate of change of the snakes
is constant over the period of a week. Doing this, after one week we
would have

1
To + —=zh = o + — (.4zo — .0000004z7) (4)

52 52(
snakes. Continuing with the assumption that the rate of change does
not vary during the course of a week, we could figure out the number
of snakes after two weeks by applying the formula above twice (the
second time replacing zy by the number computed using formula
(4)), and after three weeks, by applying it three times, and so on.
Assuming that the rate of change does not change over the
period of a week is certainly better than assuming that the rate of
change is constant over the period of a month (which in turn is better
than assuming that the rate of change is constant over the period of
a year), but is still an approximation in the sense that the rate of
change is changing constantly. We could if we wished compute over
an even shorter time period to get a better approximation. In general,
if we assume the rate of change is constant over a time interval of
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At years, and we start with x4 snakes, the number of snakes z, after
At years is

Ty = T + Atz = o + At (4o — .0000004z3)  (5).
After 2At years, then number z, of snakes is

Ty = 1 + At} = 21 + At (4z; — .0000004z3).
After 3At years, then number z3 of snakes is

T3 = T3 + At zh = z9 4+ At (4zy — .0000004z3),

and so on. Note that we are just repeatedly applying formula (5),
which followed immediately from formula (1), where we take the
result obtained and feed it back in. This process of repeatedly ap-
plying an equation is called iteration of the equation.

Incidentally, the notation At is traditional — one typically uses
the upper case Greek letter A (read "delta") to denote a small amount
of some quantity: At refers to a small interval of time; Az would
refer to a small number of snakes.

We get better and better approximations by choosing At smaller
and smaller. The price we pay is that if we want to know the number
of snakes after, say, 10 years, we have to apply equation (5) more
and more times as At gets smaller. If At = 1, then we have have
to iterate equation (5) 10 times; if instead of assuming that the rate
of change stayed constant over a period of a year, we assumed only
that the the rate of change was constant over a day (in which case
At = 31, we would have to iterate equation (5) 3650 times. This
is not difficult in principle, but it is, in practice, a lot of arithmetic!

Using a Computer

Fortunately, it is easy to get a computer to do the computations
for us. We just have to write out a clear set of instructions, called
a program, which tells the computer what to do at each step. The
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repetitive sort of task involved in iterating a single equation is ideally
suited for a computer because, while the number of computations is
large, the instructions will be simple. We just want the computer to
do the same thing over and over again.

Instructions must be given to a computer in a language that
it understands. There are dozens of different computer languages,
some of them better suited for different types of tasks than others.
(Some of you may be familiar with the more common of these:
Fortran, C, Pascal, Basic and variants.) Most of the languages are
designed to be as much like English as possible in order to make
them easy (for humans) to remember and understand. Here, for
example, is a QuickBasic program to compute the number of snakes
after ten years assuming that the rate of change is constant over a
month (so At = ;) and that we start with 10 snakes. (Incidentally,
QuickBasic is a variant or “dialect”of Basic — other variants include
TruBasic and Basica: the program below would be the same in any of
these dialects. We have chosen to write all programs in QuickBasic,
because it is easier to use than Basic, it’s cheap, it is available on
IBM-compatible PC’s and Apple products, and it also looks very like
Pascal, another program in widespread use.)

LET x=10

LET deltat=1/12

FOR N =1 TO 120

xprime = .4%x-.0000004* (x*x)
x = x + deltat*xprime

NEXT N

PRINT x

You should look over the program to see what it does. The first
two lines define the starting values of the variables. The variables
are x, and deltat. Note that a variable need not be a single letter.
We take advantage of this to name the variables so as to give a
(human) reader a clue to what the program does — the computer
does not understand English words and doesn’t care what we
call the variables. Even if it is perfectly clear to you, or to any

12



other intelligent human being, what to do with the variable based on
its name, it is not clear to the computer. The computer must be told
explicitly what to do.

A computer reads a program line by line starting with the top
line. In the above program the first line tells the machine that x
is to be set equal to 10. Thereafter, unless it were told otherwise,
everytime the computer encounters x it will substitute the number
10. If a later line gives a different value of x, say 3.14, the computer
will substitute 3.14 for x from then on and forget that x was ever 10.
The third line “FOR N=1 TO 120" is different from the preceding
ones. It signals the beginning of what is called a loop which will be
repeated 120 times. More precisely, it tells the computer to define
a new variable N, which will only take integer values, and set it
equal to 1. The computer then continues to read down the lines. It
sets xprime equal to .4 x 10 — .0000004 x 10?; that is, 3.9999996
(remember that it thinks x is 10). This is the rate of change of z, but
the computer does not know this (nor would it make any difference
if it did). Note that the computer interprets the asterisk * as a
multiplication symbol. You must put this in if you want to multiply
two numbers — it will not automatically assume that juxtaposition
means multiplication. Reading the next line, the computer sets x
equal to 10 + 75 x 3.9999996 = 10.033. (Remember, that it thinks
deltat = 1/12. Also, for brevity, we are only going to carry
three decimal places — the computer will, of course, carry more).
Henceforth it thinks that x is 10.033 and has no memory of the fact
that it once was 10. The computer encounters the line NEXT N, and
something different happens. As you might expect, it sets N equal to
the next integer (that is, 2) — but, then, before proceeding on to the
next line, it goes back to the line where N was defined and checks
whether the new value of N (that is, 2) is less than or equal to the
second number (in our case 120) in the line defining N. If it is (as it
is in our case: 2 is certainly less than or equal to 120), the machine
starts reading at the line following the FOR statement (that is, the
line following the statement “FOR N = 1 TO 1207 )). Thus it will
read the next two statements again (but thinking that x = 10.033).
Upon encountering the first line after the FOR statement , it sets
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xprime = .4 x 10.033 — .0000004 x (10.033)% = 4.013. When it
encounters the second line it sets x = 10.033+ 1—12 x4.013 = 10.368.
Now, it encounters the line NEXT N the second time; it thinks that N is
2, so it sets N equal to 3 (the next number), goes back to the line “FOR
N = 1 TO 1207, checks whether 3 is less than 120, which it is, and
consequently starts reading the line following the FOR statement. In
this way, the next two lines are read 120 times. Finally, when N =
120 and the computer encounters the line “NEXT N”, it sets N = 121
and, since 121 is not less or equal to 120, it does not read the line
following the FOR statement, but goes to the line after “NEXT N”.
This line tells it to print the value which it is currently using for x,
all previous values having been forgotten.

Let’s run the program and see what happens. We get z =
511.2602. We mentioned that this will actually be alittle off, because
we are assuming that the rate of change of the snakes is constant over
a period of a month, whereas the rate of change is actually increasing
throughout the month. Let’s see what we would get if we recomputed
the rate of change every one thousandth of a year. Then we would
take deltat = 1/1000 and replace the FOR statement by FOR N
= 1 TO 10000 (because we would need 10,000 iterations of .001
years to get to ten years. This gives the program

LET x=10

LET deltat=1/1000

FOR N = 1 TO 10000

xprime= .4*x-.0000004* (x*x)
X = X + deltat*xprime

NEXT N

PRINT x

Note that it takes a few seconds longer (because there are so
many more steps to compute). We get = 545.2544. This is
different enough so that we should probably switch to deltat =
1/1000. However, we stick to deltat = 1/12 because it is so
much faster. You should redo all the calculations below with deltat
= 1/1000 to check for yourself that what we are saying is not too
far out of line,
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So let’s return to taking deltat = 1/12. We can modify the
program to see what happens after twenty years. Doing this, we get
the following.

LET x=10

LET deltat=1/12

FOR N = 1 TO 240
xprime=-4*x-.0000004* (x*x)
X = X + deltat*xprime
NEXT N

PRINT x

Running the program, we find x = 25517.95. After thirty years
z = 579200.6 and after forty years z = 987498.9. It is clear that
the snake population is growing explosively twenty to forty years
after they have been established. In fact, we can print a little table
showing the growth of snakes against the number of years. We could
do this by moving the PRINT statement inside the loop in the last
program as follows.

LET x=10

LET deltat=1/12

FOR N = 1 TO 240
xprime=.4*x-.0000004* (x*x)
X = x + deltat*xprime
PRINT x

NEXT N

We would then get 240 values of x printed out (each time the
machine went throught the loop it would print out a value of x). Try
it! We could also keep track of the month by changing the PRINT
statement to PRINT N, x. This is better, but the large number of
lines makes it hard to see what is going on at a glance.

Instead, let us write out a program that will print out the number
of snakes every 5 years over a 50 year period. There are many ways
to do this — perhaps the simplest is to put in two loops, one which
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prints out the year and the number of snakes every 5 years (that
is, every sixtieth time we compute a new x) and another that loops
through every month. The following program does this.

LET x=10
LET deltat=1/12
PRINT "Year", "Snakes"
PRINT " ™, " ™
PRINT 0, 10
FOR J =1 TO 10
FOR N = 1 TO 60
xprime= .4*x-.0000004* (x*x)
X = x + deltat*xprime
NEXT N
PRINT 5%J, x
NEXT J

Running it, we get Table 1, where the first column is the number
of years after the time we start looking and the second column gives
the number of snakes in that year. In order to keep things straight, we
added the line “PRINT "Year', "Snakes"” which will have the
effect of printing the word “Year” as the first entry in the first column
and the word “Snakes” as the first entry in the second column. The
next line (“PRINT " ', ' ") will result in an empty line. These
devices label the columns of our table.
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Year Snakes

0 10

5 71.5158585
10 511.2602
15 3645.426
20 25517.95
25 158370.9
30 579200.6
35 911976.2
40 987498.9
45 998346.2
50 999783.4

Table 1. Computer output representing the number of years
elapsed and the number of snakes on Guam

Notice that the bulk of the growth occurs between 25 years and
35 years after the original 10 snakes. In the case of Guam, if the
snakes were introduced in the late 1940’s or early 1950’s (so say
there were 10 in 1950), then this model indicates that the population
explosion of snakes would have taken place between 1975 and 1985
(which accords well with observation) — the number of snakes would
have almost quadrupled between 1975 and 1980, and almost doubled
between 1980 and 1985.

The Logistic Graph

We can with minor modifications to the above programs, plot
the number of snakes against time. The following program will plot
the number of snakes over a sixty year time period.

SCREEN 12

WINDOW (0, 0)-(720, 1000000)
LET x=10

LET deltat=1/12

FOR N =1 TO 720

xprime= .4*x-.0000004* (x*x)
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X = x + deltat*xprime
PSET (N, x)
NEXT N

A number of lines in the program need explanation. We want
graphical output, so we have to tell the computer what we are plotting
on (in our case, a computer monitor). The first line tells the computer
the resolution of the screen that we are plotting on: the program
line SCREEN 12 indicates a high resolution VGA color graphics
screen. This command will vary from machine to machine and
from language to language. If we think of the screen as a piece of
graph paper, the second line tells the computer what the range of
numbers to plot on the horizontal axis and what range to plot on
the vertical axis. In other words, it specifies the scale. It does this
by specifying the coordinates of the lower left hand point and the
coordinates of the upper right hand point on the screen: the command
WINDOW (0, 0)-(720, 1000000) says that the coordinates of the
lower left hand point are (0,0) and those of the upper right hand
point to are (720,1000000). (By convention, the first number a in
the pair of coordinates (a,b) of a point refers to the position on
the horizontal axis and the second number b to the position on the
vertical axis.) This means the horizontal axis will correspond to the
numbers from 0 to 720 and the vertical axis to the numbers from 0 to
1000000. (Remember that you have tell a computer everything: if
you tell a person to graph something, they fiddle and choose the axes
appropriately — in a computer program you have to explicitly say
what you want.) If, instead, you had wanted the horizontal axis of
the screen to correspond to the numbers between -25 and 362 and the
vertical axis to the numbers between 1000 and 1200, the appropriate
line would have been WINDOW (-25, 1000) - (362, 1200).

The other line that needs comment is the eighth line PSET (N,
x). This tells the computer to plot the point (N, x) (thatis, light up
the pixel corresponding to the point /V units along the horixontal axis
and z units along the vertical axis). With the choice of coordinates
made by WINDOW statement in the program displayed above, the
command PSET (0, 0) would cause the point in the lower left corner
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of the screen to light up and the command PSET (360, 500000)
would cause the point in the center of the screen to light up. In the
program above, every time the program goes through the loop (that is
does an iteration) it lights up a pixel on the screen. The collection of
these lit points is what we plot out below. Actually, 720 points does
not produce a nice unbroken curve (there are too few dots) — so the
curve below was produced using 7200 iterations (that is, we replaced
the fourth line of the program above withdeltat = 1/120 and the
fifth line with FOR N = 1 TO 7200).
Running the program gives the following picture.

Snakes A x
1000000 |

800000 1
600000
400000 ¥

200000 T

10 20 30 4 s Years
Figure 1. z as a function of time if 2(0) = 10

The S-shaped curve is often called a logistic curve — in our
case it represents the growth of the number of snakes over time. It
is typical of the type of growth exhibited by a quantity that satisfies
a logistic growth law. At first the quantity grows rather slowly,
then there is a rapid increase to nearly the carrying capacity, after
which the growth slows down. This is consistent with what seems
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to have happened on Guam. If we suppose that there were around
ten snakes on Guam in 1950, then the model predicts a rapid (in
fact, five- or sixfold) increase in the number of snakes between
1976 and 1983. If we imagine that the number of power outages
caused by snakes is proportional to the number of snakes, then this
prediction is in good agreement with the datum that the number of
outages quintupled between 1978 and 1982. Of course, we should
not take these numbers too seriously: good data on the number of
snakes on Guam in the 60’s and 70’s is just not available. Moreover,
the snakes required nearly thirty years to spread to all parts of the
island — and our model takes no account of the distribution of the
snakes on the island. In fact, our model is quite crude — it does
not diferentiate between young and mature snakes (which would be
important if we wanted to model the effect of snakes on large birds)
and it incorporates assumptions about the birth and death rates of
the snakes which are little better than guesswork. Nonetheless, it
does explain how such a rapid increase in power outages and snake
sightings could have occurred.

Summary
We did three things in this chapter.

e We identified a quantity in which we were interested.

¢ We wrote down an equation for the rate of change of this quan-
tity.

e We used this equation for the rate of change to describe how
the quantity behaves as time passes.

The quantity in which we were interested was the number of
snakes z. The rate of change z’ of the number of snakes (in units of
snakes/year) was given by the equation z’ = .4z(1 — .0000001z).
The growth in x as a function of time is described by the table in
Table 1 and the graph in Figure 1.

These three steps are common to almost all modelling (involv-
ing dynamical systems). In fact, if there is any strategy common to
all modelling efforts, it is the following: 1) identify the quantity (or
quantities) of interest, 2) write down equations for the rates of change
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of these quantities, and 3) use these equations (and a computer) to
get values of these quantities at any time.

These are the main principles. We also saw a number of more
specific things.

e The rate equation we got belonged to a class of commonly
used ecological models: namely, the logistic growth models
z' = ax — bx?

¢ The process by which we obtained the rate equation was filled
with guesswork. Atbest we can say that the equation is plausible
— the determination of a and b was an estimate subject to large
amounts of error. Nonetheless, the process of working out a
rate equation resulted in our identifying a number of interesting
features of the situation: for example, the quantity a/b is called
the carrying capacity and represents the number of individuals
of a species that the environment can support. We will see
many more examples of interesting quantities emerging from a
modelling effort.

o There are a variety of computer languages — with the use if a
manual it is easy to write a set of instructions or program to
perform a given repetitive task.

There is one mathematical principle which is tacit in what we
have done in this chapter and which will play a central role in all that
follows. Namely:

¢ If you know a quantity at some time and know the
rate of change of that quantity for all values of the
quantity (or at all times), then you can determine
the value of that quantity at any time.

We will elaborate on this principle later in this monograph. As we
will see, experience shows that it is often easier to write equations for
the rate of change of a quantity than for the behavior of the quantity
itself over time.

Incidentally, the logistic growth model fits a good many popu-
lations encountered in practice and in the laboratory. For an account,
see the first chapter of Waltman’s book Competition Models in
Population Biology (see bibliography). For more on the brown
snake, see the papers of Fritts and Savidge cited in the bibliography.

21



Exercises on Logistic Growth

1. If we want to accurately get z from the equation for the rate
of change z’, then we have to compute = over shorter and
shorter time intervals. In the text we saw that if we computed
the number of snakes after 10 years, assuming that the rate of
change is constant over a period of 1/12 of a year, then we
obtained 511.2602 snakes. On the other hand, if we computed
assuming the rates of change are constant over a period of a
thousandth of a year, then we get 545.2544 snakes. Compute
the number of snakes at the end of ten years using a time interval
of one ten-thousandth of a year. Do the same thing for a time
interval of one one-hundred-thousandth of a year. Based on
these answers, what is the actual number of snakes, correct to
one decimal place?

2. If 2’ = 3z + 2 and z is equal to 3 at time 0, what is z, correct to
two decimal places, fifteen time units later? (You will need to
write a computer program; make sure you make your choice of
At explicit — you will need to experiment with several different
choices until you feel confident of the accuracy.

3. What would the equation for the rate of change of the number
of snakes be if we assume that each female snake produces on
average three snakes each year that make it to adulthood? How
long would it take a population of 10 snakes to grow to over
900,000 under this assumption.

4. What would the rate of change of the snakes be, if the average
snake lived only 5 years (instead of 10). How long would it
take a population of 10 such snakes to grow to over 900,000
snakes under this assumption?
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Chapter 2— Ecological Models

Modelling Species Interactions

The dwindling number of birds on Guam was noticed before the
burgeoning number of snakes. Generally, the growth of one species
affects other species in different ways. Can we try to imagine what
some of these are?

The interactions among species in a complex environment are
intricate, so we confine our studies to two species. This will give
us a sense of the issues involved in trying to model environments.
The two species can interact in a number of different ways. They
could compete in the sense that they eat the same food. Or they
might be symbiotic, each species being able to survive without the
other, but both doing better when the other is present. Or one species
might feed on the other. We are interested in what will happen to
the populations in each of these cases. Will one species kill off the
other? Will the populations settle down to some steady state values
in which both survive? Or will the populations fluctuate in some
manner? To see what happens, we construct models for the different
ways in which the species interact.

Competing Species

We know (or at least have a pretty good idea about) what hap-
pens when brown snakes and birds share the same environment, so
let’s instead consider two imaginary species of birds, the red-breasted
berry guzzlers and the white-tufted berry chompers, on an isolated
island. Let’s suppose that both species of birds eat the same types
of berries and that the berries grow in abundance on the island. Can
we formulate some hypotheses regarding the rates of change of the
populations?

Let z be the number of red breasted berry guzzlers (or, if you
prefer, the biomass of berry guzzlers, measured in units of average
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guzzler weight). Let’s measure time in months. So let z’ denote the
rate of change of the population per month. If there are no chompers
around (and, of course, no other species of birds or animals, such as
brown snakes, to interfere with the guzzlers), then we assume that
the guzzlers grow logistically.

In particular, when the population is small, we assume that z’ is
proportional to z. For the sake of definiteness, let’s suppose that the
average lifespan of a guzzler is 3 years or, since we are measuring
time in months, 36 months. Suppose further that each year every
couple gives birth to (on average) 1 bird. Then, on the average, we
would expect =z birds to die and & - 1z to be born each month.
Thus, when z is small, we want

Let’s assume that the carrying capacity of the island is 10000
birds (so that the rate of change of x becomes negative if there are
more than 10000 birds). Since we are assuming a logistic growth
law we must have

T

!
= .014 -
= = 0l42(1 - 35550)
or, upon multiplying through,
' = .014z — .000001422. (1)

As in the last chapter, we can, if we want, think of the term
proportional to z2 as a ‘crowding’ factor, and view equation (1) as
saying that the rate of change of the population is proportional to the
number of individuals decreased by a crowding factor proportional
to the square of the population.

Before moving on, let us plot how z, viewed as a function
of time, changes in accordance with equation (1). We stc  .th
z = 100 at time ¢ = 0 and see what happens over the course of
100 years. The following program (in QuickBasic) will perform the
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computations. We do the computations at intervals of .1 months and
plot the results for the 1200 months (that is, 100 years).

DEFDBL A-Z
SCREEN 12
WINDOW (0, 0)-(12000, 10000)
LET x = 100
LET deltat = .1
FOR N = 1 TO 12000
xprime = .014 * x * (1 - .0001 * x)
X = X + deltat * xprime
PSET (N, x)
NEXT N

The first line of this program needs explanation. Unless you
tell it otherwise, QuickBasic (like BASIC and FORTRAN) will only
store the first eight digits of a number — this is called single precision.
We have numbers ranging from .0000014 (the coefficient of z2) to
10000 (the maximum value of x,) and we are asking the computer
to do 12000 computations, so it behooves us to store more digits. (In
the course of 12000 computations, it is easy to imagine that the small
errors caused by rounding numbers to seven digits will compound
and become significant). The next step up is called double precision
and refers to having the computer store 16 digits. The first line of
the program DEFDBL A-Z states that every variable beginning with
the letters a to z should be treated as a double precision number.
This means that 16 digits are stored. (This does not make much
difference in this example, but it is good to get in the habit of using
double precision when using a program which has a lot of iterations
— this is absolutely crucial in some of the programs which follow).
Running the program gives the graph sketched in Figure 1.

We drew the axes in Figure 1 by hand, although it would have
been easy to add a few lines to the program to have the computer
draw them.

Now let us consider the white-tufted berry chompers, the other
species of birds on our island which also feeds on the abundant
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Figure 1. z as a function of time if
¢’ = .014z(1 — .0001z) and z(0) = 100

berries. Let y be number of chompers (or, if you prefer, the biomass
of the chompers in units of the average indivual berry chomper
size). Again, for the sake of argument, let’s suppose that without
the guzzlers, the berry chompers would also grow logistically (so
y' = ay — by? for some specific values of a and b).

Suppose also that when the population of chompers is relatively
small and there are no guzzlers around, the average chomper lives for
two years and that each couple gives birth, on average, to two berry
chompers a year. Thus, if the chomper population is not too large,
the number of births per month is % -;-y (where we are assuming that
%y is the number of couples). Since each bird lives an average of 24
months, in a population of y birds, we can expect an average of Elzy
deaths per month. Thus if y is not too large, the rate of change v/’
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of y is equal to (£ — 5 )y = .042y. Let’s suppose that the average
chomper is smaller than a guzzler, so that the island could support
12500 chompers. Under these assumptions we have

1
= 042y(1 - 550 Y)

or, doing the arithmetic,
y' = .042y — .0000034y2. 2)

We remark that in rounding off to get the coefficients of y and 32 to
two digits, we have actually changed the carrying capacity slightly
from 12500 to 082 7 ~ 12353. These slight differences will
not concern us: there is no way our model could ever be precise
enough to make differences at this scale meaningful. systems, one
never knows the values of the coefficients — in this case, the growth
rate and the carrying capacity — exactly. Even in well understood
situations, it would be rare to have more than two-digit accuracy
in the coefficients. The simplest way to determine how sensitive
your answers are to rounding off is to run the computer program
with different values of the coefficients — for example, you might
try running equation (2) with the values .041 in place of .042 and
.0000033 in place of .0000034.

‘What happens when both guzzlers and chompers are present on
the island? If they both eat the same food, then there will be less to
go around. One way we could try to take this into account is to as-
sume that rate of increase of one species is reduced by some amount
proportional to the number of interactions between the species. (One
might imagine, for instance, that if a bird of each species arrived at
the same berry bush, then each bird would go away with less food; on
the other hand, if the populations of both were small and on different
parts of the island, so there was no interaction between the species, it
is difficult to imagine that either would affect the growth rate of the
other.) To a first approximation, the number of interactions between
z individuals and y individuals is proportional to the product zy
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(because, again to a first approximation, the number of interactions
should be proportional to x and y separately). Thus, to take account
of the presence of the other species, we might subtract some number
times zy from equation (1) and some, possibly different, number
times zy from equation (2). If one accepts this argument, a rea-
sonable model for the interaction of two competing species would
be:
t' = azx - b — cxy
, 2 (3)
y =dy—ey” — fay,

where a, b, ¢, d, e, f are positive constants. For the sake of argument
let’s take a,b,d and e to be as in equations (1) and (2); that is,
a = .014,b = .0000014, d = .042, e = .0000034. To guess at some
sensible values of c and f, note that the term czy must represent the
decrease on average of the number of guzzlers per day resulting from
competition. To pull numbers out of the air, we might imagine that if
y were about 6000 (that is, about half their carrying capacity without
guzzlers), the rate of increase of the guzzlers would be reduced by
one third. Thus ¢ might be g5z - 3 - (.014) ~ .0000008. Similarly,
we might imagine that if x were about 5000, the rate of increase of
the chompers would be reduced by one fourth. Thus f might be
so55 * 3 (-042) = .0000021. We emphasize, that we are just making
numbers up here: the exact values are not important (but we do want
to get the order of magnitude about right). Note, however, that these
types of considerations suggest that b and c (respectively e and f)
are roughly of the same order of magnitude (and many orders of
magnitude less than a (respectively, d)). We wind up with the model

' = .014z; — .0000014z% — .0000008zy

! 2 (4)
¥y = .042y — .0000034y° — .0000021zy.

Before checking what happens, we pause to ask what we would

do about obtaining the numbers a-f for equation (3) in a real sit-
uation. We cannot emphasize too strongly that one should consult
an ecologist: even measuring population levels in the wild is tricky,
much less growth levels and carrying capacities. As you might ex-
pect from our discussion above, the numbers a, b, d, e are easier to
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measure than ¢ and f. One frequently gets values by seeing what
happens for different values of a — f and choosing values which
give equations whose behaviour is closest to that observed in the real
situation. Systems like (3) are also used to test hypotheses: what
values of the carrying capacities (b and e) are consistent with what
is observed?; if you want to reduce the numbers of some pestifer-
ous species and hold them fixed at some low value by introducing a
competing species, what characteristics would the introduced species
have to have?; what is the scale of interspecies rivalry (that is, the
values cand f) consistent with what is observed? and so on.

Let us return to equation (4). What happens? Suppose, we
start with 100 berry guzzlers and 200 berry chompers. We write a
brief program that sketches the way in which = and y change over
20 years (240 months). We do the computations over time intervals
of .1 months.

DEFDBL A-Z

SCREEN 12
WINDOW (0, 0)-(2400, 12500)

LET x = 100

LET y = 200

FOR N = 1 TO 24000

xprime=(.014 -.0000014 * x-.0000008 * y)*x
x= x + .1 * xprime

PSET (N, x)

yprime=(.042-.0000034 * y-.0000021 * x) * y
y =y + .1*xyprime

PSET (N, y)

NEXT N
PRINT x, y

Upon running this program, we find (see Figure 2) that the
chompers increase very fast, reaching a population of almost 12000
by the end of the 20 years, whereas the guzzlers have barely limped
up to a population of 649. Will the guzzlers go the way of the
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Figure 2. z and y over a 20 year interval

passenger pigeons and the dodo birds or will they rally and reach a
respectable population?

To answer the question, we check what happens over the course
of 200 years (2400 months). To do this we modify the program
slightly, replacing the number 2400 in the WINDOW command by
24000, and changing the statement FOR N = 1 TO 2400to FOR N
= 1 TO 24000. Running the program, we obtain Figure 3

The guzzlers do indeed rally, beating back the chompers! After
200 years, the number of chompers drops to 9550 and the number of
guzzlers rises to 4539.

Below, we have plotted the values of (z, y) for different starting
values z(0) and y(0) of =z and y. We suppose y(0) = 200 and
have sketched what happens to the state (z,y) (in the course of 100
years) when z(0) = 2000, 4000, 6000 and 8000, respectively. The
following program plots = against y for different values of time,
beinning with z = 2000 and y = 200 at time 0 and ending 100 years
(= 1200 months)later. This curve is called a trajectory.
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Figure 3. z and y over 200 years

DEFDBL A-Z

SCREEN 12

WINDOW (0, 0)-(10000, 13000)

LET x = 2000

LET y = 200

FOR N = 1 TO 12000

xprime=(.014-.0000014 * x-.0000008 * y)*x
X = x + .1 * xprime

yprime=(.042-.0000034 * y-.0000021 * x)* y
y =y + .l*yprime

PSET (x, y)

NEXT N

Adding another loop makes it sketch the trajectories from the four
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different starting values we want.

DEFDBL A-2Z

SCREEN 12

WINDOW (0, 0)-(10000, 13000)

LET t =0

FORK =1 TO 4

LET x = 2000 * K

LET y = 200

FOR N = 1 TO 12000
xprime=(.014-.0000014#*x-.0000008*y) *x
Xx = x + .1 * xprime
yprime=(.042-.0000034*y-.0000021%x) *y
y=y + .1 % yprime

t=1t+ .1
PSET (x, y)
NEXT N

NEXT K

We obtain the following picture.

The numerical evidence suggests that we always end up with
about 9545 chompers and 4545 guzzlers. To verify this, let’s return
to equation (4) and try to get some idea of what it says. We will do
this by interpreting equation (4) geometrically. Before doing this,
we need to recall some notions that you learned in school.

Pairs of Numbers and Points on the Plane

You probably learned in school that there is a one to one corre-
spondence between numbers and points on a line. This is the starting
point for one of the more fruitful lines of thought in Western intellec-
tual history, namely Descartes’ powerful synthesis, relating numbers
and geometry. Descartes noted that every number could be identified
with a point on a line. One chooses a point on the line (and calls
it the origin), an orientation (that is a “positive” direction from that
point), and a unit of length. Then, for example, the number -2.5 cor-
responds to a point 2.5 units from the origin in the direction opposite
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Figure 4. z and y for various z(0) and fixed y(0) = 200

to the positive direction (the “negative" direction), the number = to
the point 7 units from the origin in the positive direction. This leads
to the familiar concept of the number line, a phrase meant to signal
that the set of real numbers and the notion of a line are equivalent
(see Figure 5).

Descartes went further. He saw that any point in the plane
could be given by two numbers. One chooses an origin, a unit of
length, two axes intersecting at the origin, and an orientation along
each axis. On specifies an arbitrary point by two numbers, the first
indicating how far it is along one axis (in the positive or negative
direction according to whether the number is positive or negative),
the second indicating how far it is along the other axis (with the same
sign convention). Conversely, any pair of numbers corresponds to a
point of the plane (see Figure 6). The set of all real numbers is usually
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Figure 5. The correspondence between points
on the line and numbers

denoted by R and the set of pairs of numbers by R2. Thus, there is
a one-to-one correspondence between points of R? and points in the
plane.

Figure 6. The correspondence between points on the
plane and pairs of numbers

In our model, the point (z,y) on R? corresponds to having
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z guzzlers and y chompers. When we are thinking of a point in
(z,y) € R? as corresponding to a situation we are modelling, we
refer to it as a state. Of course, when modelling populations of two
species, not every point of the plane is a state. To be a state (that is
to correspond to a possible real situation), a point (z, y) in the plane
must be such that z > 0 and y > 0. The set of all possible states,
that is the first quadrant {(z,y) : ¢ > 0,y > 0}, is called the state
space.

Rates of Change of Pairs of Numbers

We can think of equation (4) as assigning to each point (z, y)
of the plane, the numbers (z’, y') according to the rule

' = .014z; — .0000014z* — .0000008zy

: 2 (4)
y = .042y —.0000034y° — .0000021zy.

Thus, to the point (1000, 2000) corresponding to 1000 guzzlers and
2000 chompers, equation (4) assigns the pair (z', y’) where

' = .014(1000) — 0000014(1000)% — .0000008(1000)(2000)
=14 — 1.4 — 1.6 = 11.0guzzlers/month

and

y' = .042(2000) — .0000034(2000)? — .0000021(1000)(2000)
= 84 — 13.6 — 4.2 = 66.2chompers/month.

We think of this pair as the “rate of change” (or “velocity”) of the
point (1000, 2000). The first number 1000 of the pair is changing at
arate of 11.0 guzzlers/month, the second number 2000 at the rate of
66.2 chompers/month. (Both quantities are increasing - if one were
decreasing, its rate of change would be negative.)

In terms of the language introduced a little earlier, equation (4)
assigns to each state (that is, to each point (z, y) in the first quadrant
of R?) a rate of change (z’, ') of that state. This rate of change is
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also a pair of numbers, so that we could also picture it as a point in
R2. However, this runs the danger of confusing rates of change of
states and states. Instead we picture the rate of change (z’,y’) of a
point (z,y) as an arrow beginning at (z, y) and going z’ units in the
horizontal direction (to the right if =’ > 0, to the left if ' < 0) and
y' units in the vertical direction (up if ¥’ > 0 and down if 3’ < 0).
Thus we picture the rate of change (11, 66.2) of the point (1000,
2000) as an arrow starting at (1000,2000) and going 11 units to the
right and 66.2 units up. We have sketched this in Figure 7 below.

2080 [
2040
2000
[T R N G NN WO T N | P S T N RN S TS N
950 1000 1050

Figure 7. The state (1000, 2000) with velocity (11, 66.2)

If, instead, we wanted to represent a state (210, 315) with rate
of change (3, -5), we would draw the arrow starting at the point (210,
315), but pointing down 5 units and to the right 3 units (see Figure
8). Similarly the arrow corresponding to the rate of change (-3, 5)
points up and to the left and and that corresponding to (-3, -5) down
and to the left.
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Figure 8. A point (210,315)with velocity (3,-5)

Rate Equations and Vector Fields

We have already stated that equation (4) can be thought of as
assigning to each point (z,y) of R? a rate of change (z',y’). We
have just seen that we can picture the rate of change of a point as an
arrow starting at that point. Thus, we can think of equation (4) as
assigning to each point of R? an arrow which represents the rate of
change of the point. That is, we can think of equation (4) as attaching
lots of little arrows to points on the plane, one arrow for each point.
Since an arrow at a point is often called a vector, a collection of
arrows attached to points of a set is called a vector field on that
set. Equation (4) defines a vector field on R?,

In Figure 4, we plotted the points (z,y) for different values of
time starting from some fixed point (z(0),y(0)) at time ¢t = 0. We
called these curves trajectories. We think of the state moving along
the trajectory — at each point on the trajectory its rate of change is
that given by equation (4).

37



Long Term Behavior

What’s all this have to do with winding up with 9545 chompers
and 4545 guzzlers, no matter how many of each we begin with?

First note, that almost every state (z,y) is changing. Those
that aren’t must satisfy 2’ = 0,4’ = 0. Such states are important
enough to warrant a separate name. In general, states (z,y) with
the property that z' = 0,3’ = 0 are called equilibrium states or
points. Such states have rate of change (0,0). If we start at such a
state, we will always remain at that state.

The equilibrium states of the vector field defined by equation
(4) must satisfy ’

.014z; — .0000014z% — .0000008zy = 0
042y — .0000034y? — .0000021zy = 0.

Rewriting gives

(14 — 0014z — .0008y)z = 0
(42 — .0034y — .0021z)y = 0.

Thus we have equilibria when (z,y) = (0,0); when = 0, in which
case 42 — .0033y = 0, so that y = 12253; when y = 0, in which
case 14 — .0014z = 0, so z = 10000; and, finally, when

14 — .0014z — .0008y = 42 — .0034y — .0021z = 0,

in which case © =~ 4545 and y =~ 9545. We have sketched these
equilibrium points, together with the lines 14 —.0014z —.0008y = 0
and 42 — .0034y — .0021z = 0 in Figure 9 below. (Note that the
lines can be put into the usual slope-intercept form by dividing by
the coefficient of y and transposing. Upon doing this, the equation
of first line, call it Line I, becomes y = —1.75x 4+ 17500 and that of
the second, call it Line II, y = —.618z 4 12353

Now we want to get an idea of how the other states are changing.
We do this by determining which way the arrows point at various
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i: 14-.0014x - .0008y =0
17500 Il: 42-.0034y - .0021x=0
12353 ¢
(4545,9545)
2000 1
—9 t —+ + t + ; ; + » X
2000 10000 19989

Figure 9. Equilibrium points of the vector field
defined by equation (4)

places on the phase space, note that ' < 0 at all points of the first
quadrant above Line I and =’ > 0 at all points in the first quadrant
below this line. So, in the first quadrant, all arrows above Line I point
to the left, all arrows below the line to the right, and all vectors on
the line are vertical. Similarly, since y’ is less than zero above Line
11, equal to zero on it, and greater than zero below it, all arrows in the
first quadrant above the Line II point down, all arrows beginning on
it are horizontal, and all vectors below it point up. We sketch some
representative arrows (enormously magnified) in Figure 10.

The vector field shows clearly, that no matter where we start,
the populations of guzzlers and chompers will eventually settle down
to constant values (in our case, 4545 and 9545, respectively).
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Figure 10. The vector field defined by equation (4)
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2000 10000 19989

Long Term Behavior of the General System

By generalizing the above argument, we can imagine the various
possibilities for the vector field in the case of the general system
represented by equation (3). Checking first where =’ and y' are
equal to zero, we have

' =0ifand only if z(a — bz — cy) = 0
ifandonlyifr =0ora—bz —cy =10

y' =0ifand only if y(d — ey — fz) =0
ifandonlyify =0ord—ey — fz = 0.

Thus the arrows are vertical on the y-axis and on the line y =
—%x + % The arrows are horizontal on the z-axis and on the line
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y = —Ly + 4. We can assume, by interchanging the names of the
variables that 2, the y-intercept of the first line, is greater than 4
the y-intercept of the second line (see Figures 11 and 12). We have
two possibilities: either the lines meet or they don’t. If they meet,
we essentially have the situation in Figure 11. Both species coexist
and their populations move towards some steady state.

AY

Figure 11. One possibility for the vector field
defined by equation (3)

If the lines don’t meet, then we get the a diagram of the vector field
like that sketched in Figure 12. Notice that in this case, the two
species do not co-exist. In the long run, the species corresponding
to y will die out, and the other will flourish, tending towards a
population of # (that is, its carrying capacity).
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Figure 12. Another possibility for the vector field
defined by equation (3)

Other Models of Competing Species

We stress that models represented by equation (3) are just one
way of taking into account the interactions between two competing
species. We could also take the interaction into account by assuming
that the carrying capacity of the island for each species is reduced
by the presence of the other. We might imagine, for instance, that if
the number of chompers were close to their carrying capacity, then
the carrying capacity of the guzzlers would approach zero and that
if the number of chompers were small, then the carrying capacity of
the guzzlers would not be affected too much. That is, the carrying
capacity for the guzzlers is some fraction (between 0 and 1) times
10000 which aproaches zero as the number of chompers approaches
12500 and 1 as the number of chompers approaches zero. The
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simplest such fraction is 1 — 35¥55. Thus, we might assume that the
carrying capacity for the guzzlers when there are y chompers on the
island is
Y
10000(1 — ——).
( 12500)
Similarly, the carrying capacity for the chompers when there are =

guzzlers could plausibly be taken as

T
12500(1 — 10000).

We arrive at the following model describing the the populations of
guzzlers and chompers:

T
= 0l4z(1 -
(- o000 = o)) )
"= 042y(1 - Y .
Y v(1~ Tos000 = 1—0;;%)

These equations do not make biological sense if either z > 10000 or
y > 12500 (why not?), so we assume that the state space is the set
of all (z,y) such that 0 < z < 10000 and 0 < y < 12500.

For the simple models we have considered (those represented
by equations of the form (3)), we see that two competing species
always settle down to steady state populations. This is because the
corresponding vector field is either like that sketched in Figure 11
or like that in Figure 12. All populations, not at an equilibrium
state, tend to a unique eqilibrium state. Depending on the value of
the parameters, the species can co-exist (that is, both steady state
populations are greater than zero as in Figure 11) or one will die out
(so, one of the steady state populations is zero as in Figure 12). These
general conclusions can be shown to hold for more general models
of two competing species. For more details, see the (very readable)
paper by A. Recigno and I. Richardson or J. Maynard Smith’s book
cited in the bibliography. A more mathematical treatment is given
in Chapter 12 of Hirsch and Smale’s book.
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Exercises on Competing Species.

Exercise 1. Write a program that graphs z against ¢ if z’ is given
by the equation
p 014z

r = —m——.
1-.0001z

You will need to choose a value of z when ¢ = 0 — you should try
different values. Explain why this is not likely to be a good model of
population growth. (Hint: what happens when z gets near 100007?)

Exercise 2. If both species tend to a steady population, find the
value for the equilibruium point in terms of a, b, ¢, d, e and f.

Exercise 3. Invent, and justify as plausible, a set of values for
a,b,c,d,e and f under which one species would become extinct.
(You can use chompers and guzzlers with different growth rates and
carrying capacities, or you can imagine a different pair of species.)

Exercise 4. Write and run a computer program which follows
the trajectories of a number of specific states for the model you
constructed in the last exercise. Explain how the results fit in with
sketch of the vector field displayed above.

Exercise 5. Analyze what could happen if £ = % in system (3)
above.

Exercise 6. Write a computer program to sketch trajectories of
the dynamical system given by equation (5) and run it for several
different choices of initial conditions. What happens? Justify your
conclusions by sketching the vector field. How does the behavior of
this system differ from that of system (4)?

Exercise 7. What sort of behavior can you expect in general for
models of the type exemplified by equation (5).

Exercise 8. Write a program to compute the trajectory of system
(4) beginning at (1000, 2000), but do not use double precision.
Discuss how your results differ from those we obtained above. This
is an instance where very different (and spurious) conclusions can
result from the numerical errors that result when a computer stores
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a number by just retaining a given number of digits and dropping
the rest. (This is a phenomenon that one must keep in mind when
using a computer to track the behavior of variables over time. Many
newer computer languages, such as Mathematica, carry as many
decimal places as needed to avoid round-off errors — however, older
languages like Fortran and Basic truncate digits to a given number
of decimal places. If you are making decisions based on a model
of some situation, you should make sure not only that you can live
with the assumptions made in making the model, but also that the
conclusions drawn from computer analysis have not been vitiated
by round-off errors. If a lot depends on the analysis, is well worth
using a language that allows one to carry arbitrarily many decimal
places and checking carefully to see how sensitive the answers are to
truncation by running the program several times carrying different
numbers of decimal places. If human life depends on the analysis,
make sure someone has performed a full-scale error analysis (a topic
outside te scope of this monograph).)

Species in Symbiosis

It is certainly not always the case that two species compete.
There are many examples in nature of situations where two species
are in symbiosis. This means that both species can survive quite well
without the other, but that the growth rate of one or both is enhanced
by the presence of the other.

An example of symbiosis is the crocodile and Egyptian plover
bird. The plover bird gets meals by picking insects and leeches from
the crocodile’s teeth, while the crocodile benefits by getting its teeth
cleaned and its mouth rid of harmful pests.

Let us assume that we have two species in symbiosis and that
z is the amount of the first species and y the amount of the second
species. As in the case of competing species, we assume that each
species grows logistically in the absence of the other. However, to
say that the species are in symbiosis can be reasonably interpreted
as saying that the growth rate of one species will be increased by
interactions with the other. Since the number of interactions can, to a
first approximation, be thought of as proportional to the product of =
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and y, we might write 2’ = az — bz’ +czyandy’ = dy—ey? + fzy,
where a,b,c,d, e, f are positive. (A better approximation to the
number of interactions would require more knowledge about the
specific species and might involve higher powers of xy.) We could
allow ¢ = O or f = 0 if one species enhances the other’s growth, but
not conversely. Putting these equations together gives a model for
species in symbiosis:

' = az — bz? + czy

y' =dy — ey’ + fay. ©
Here all coefficients are positive (except that we allow either ¢ or
f to be zero). Note that this differs from the model represented by
equation (4) for competing species only by the sign in front of the
term ry. _

In the case of symbiosis, we would certainly not expect one
species to die out. To get some idea of what happens in equation (6),
let’s try a specific example. In fact, let’s take a, b, ¢, d, e, f to be the
same as in our guzzler-chomper example:

' = .014z — .0000014z% + .0000008zy

' 2 (7)

y' = .042y — .0000034y* + .0000021zy.
We can again write a program to see what happens. Let’s try the
initial values * = 100 and y = 200. A first run shows that the
window (0, 0)-(1200, 12500) is too small, because the y values
quickly exceed 12500. A little experimentation shows that replacing
12500 by 30000 (or anything higher) works well.

DEFDBL A-Z
SCREEN 12

WINDOW (0, 0)-(1200, 30000)
LET x = 100

LET y = 200

FOR N = 1 TO 12000
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xprime= (.014-.0000014#*x+.0000008%y)*x
x =x + .1 * xprime

PSET (N, x)

yprime=/ (.042-.0000034*y+.0000021%x)*y
y =y + .1xyprime

PSET (N, y)

NEXT N

PRINT x, y

Running the program gives the results shown in Figure 13.
xy A

30000 T 28636

25000 + 26364

20000 T

15000 |~

10000

5000 T

- 4 5 I I 3
T T T — T T

20 40 60 80 years

Figure 13. z and y as functions of time
in the symbiotic system (7)

Note that z and y tend to the steady populations 26364 and
28636, respectively. The effect of the symbiosis is to allow far
more individuals of each species to live on the island than would
be possible if either species were alone on the island. In fact, the
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equilibrium population of either species is more than double the
carrying capacity of the environment for that species!

In view of our experience with competing species, we might
suspect that all trajectories in the state space (the first quadrant of
R?), except those on the axes, tend to the point (26364, 28636). To
check, we might try to see what happens for several different starting
values of (z,y). As we did in the case of competing species, we
suppose that y(0) = 200 and have sketched what happens to the state
(z,y) (in the course of 100 years) when z(0) = 2000, 4000, 6000 and
8000, respectively. The following program is a simple modification
of the one for competing species.

SCREEN 12

WINDOW (0, 0)-(30000,30000)

FOR K =1 T0 4
LET x = 2000 * K
LET y = 200
FOR N = 1 TO 12000
xprime=(.014-.0000014%*x+.0000008%y) *x
X =x+ .1 % xprime
yprime=(.042-.0000034*y+.0000021*x)* y
y=y + .1 % yprime
PSET (x, y)
NEXT N

NEXT K

Running the program produces the results shown in Figure 14.

These strongly support our suspicion that all trajectories tend
to the point (26364, 28636). To check that this is indeed the case,
we roughly sketch the vector field. As in the case of competing
species, we verify that the arrows are vertical on the lines z = 0
and 14 — .0014z + .0008y = 0 and horizontal on the lines y = 0
and 42 — .0034y — .0021z = 0. Working out the signs produces the
results shown in Figure 15. It shows clearly that, no matter where
we start (other than on the axis), the trajectory does indeed tend to
the equilibrium point (26364, 28636).
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Figure 14. z and y for (0) = 200, 400, 600, 800
and fixed y(0) = 200

Exercises on Species in Symbiosis

Exercise 1. Verify the details shown in Figure 13 of the vector
field defined by equation (7). In particular, work out the intercepts
and all equilibrium points. Show that the arrows do indeed point in
the directions indicated.

Exercise 2. Analyze the possibilities for the vector fields deter-
mined by the equations having the form (6). (Hint: As in the case of
competing species, consider the possible dispositions of the lines on
which z’ = 0 and ¢y’ = 0.

Exercise 3. From the last exercise you know that for certain
parameter values, the = or y coordinates along the trajectories of
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(26364, 28636)

Figure 15. The vector field defined by the equation (7)

equation (6) can tend to infinity. Discuss why this is impossible
on biological grounds. (Challenge: Show that this does not happen
if one subtracts from each equation. One can think of this as a
“second-order interaction effect” which damps down the positive
effect of interactions on the growth rate when either z or y is large.)

Exercise 4. We could have tried to model symbiosis starting
with the assumption that one species increases the carrying capacity
of the environment for the other without affecting the growth rate.
Suppose we have two species which grow logistically in the absence
of the other. Suppose further that the growth rate of one is .01
with carrying capacity 10000, and the growth rate of the other is .03
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and the carrying capacity 25000. Write down a dynamical system
which models a symbiotic relationship between the species which
does not change the growth rate of either species, but which doubles
the carrying capacity of the environment for each. How do these
equations compare with equations of the form (7)?

Predator-Prey Models

There is still another way in which we can imagine two species
interacting. One species can prey on another: that is, one species
is the other’s food. This is the case with the brown snake and any
bird species on Guam. Let us return to our island and suppose that,
instead of snakes and birds, it is populated with rabbits and foxes.
Let us imagine further that the rabbits live on the abundant native
berries and that the rabbits are the sole food supply of the foxes.
(This is decidedly not the case for the brown snake — it has a very
varied diet.) We again ask what happens over the course of time.
Will the number of foxes and rabbits reach a steady state? Might
one or both species become extinct?

Let = be the number of rabbits (or, if you prefer, the total mass
of the rabbits measured in units of average rabbit size) and y be
the number of foxes (or, alternatively, the total mass of the foxes
measured in units of average fox size). To determine how z and y
change with time, we try to write equations for z’ and y’.

We make the following assumptions.

o In the absence of foxes, the rabbits grow logistically.

o The population of rabbits declines at a rate proportional to the
product zy. This is reasonable in that the number of encounters
between rabbits and foxes will, to a first approximation, be
proportional to the product of x and y.

¢ In the absence of rabbits, the foxes die off, at a rate proportional
to the number present.

e The fox population increases proportional to the number of
encounters between rabbits and foxes. Again, to a first approx-
imation, this says that there is an increase in the fox population
proportional to zy.
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We can express the above as equations for z’ and 3’ as follows

' =azx—bz® —cxy

8
y =—-dy+eazy, ®)

where a, b, ¢, d, and e are positive constants which would have to be
determined through field observations. These equations are called
the Lotka-Volterra equations with bounded growth.

To see how the system behaves, we make up some values for
the coefficients. Suppose

a = .1 rabbits per month per rabbit

b = .00001 rabbits per month per rabbit

¢ = .004 rabbits per month per rabbit-fox
d = .04 foxes per month per fox

e = .00002 foxes per month per rabbit-fox

With these choices of parameters, we obtain the following system

z' = .1z — .00001z? — .004xy )
y' = —.04y + .00002zy.

To see what happens, suppose that we start off with 1000 rabbits and
10 foxes. The following program is a modification of the program
for competing species and plots the values of z and y (actually 50 - y
— see below) over a hundred years (1200 months). We have taken
At = .1 month.

DEFDBL A-Z

SCREEN 12

WINDOW (0, 0)-(1200, 10000)
LET x = 1000

LET y = 10

FOR N = 1 TO 12000
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xprime = .1 * x -.00001 * x * x -.004*x * y

X =X + .1 * xprime

PSET (t, x)

yprime = -.04 * y + .00002 * x * y
y =y + .lxyprime

PSET (t, 50%y)

NEXT N

PRINT x, y

In order to plot the foxes and rabbits on the same graph, note that we

plot 50 - y instead of y. (There will clearly be far fewer foxes than
rabbits. If we assume that the average fox needs a rabbit a week to
stay healthy, then a fox will eat about 50 rabbits a year, so 50 times
the number of foxes should be the same order of magnitude as the
number of rabbits). Running the program gives the graphs in the

Figure 16.
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Figure 16. Rabbit and fox populations as functions of time
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For these initial values, the number of rabbits and foxes tends
to a steady state, with the number of rabbits approaching 2000 and
the number of foxes 20. The number of rabbits gets nowhere near
the carrying capacity (which is 10000, for the values we chose):
the maximum number of rabbits is about 3900 and occurs after 40
months.

Notice that there is a new feature here. The numbers of rabbits
and foxes oscillate — their numbers rising and falling in a regular
manner — the oscillations gradually dying out towards the steady
state. This is particularly noticeable if we follow the trajectory in
the state space. The following program produces a picture of the
trajectory (we have adjusted the window size to take account of the
fact that the rabbit and fox populations never exceeded 5000 and 50,
respectively.)

DEFDBL A-Z

SCREEN 12

WINDOW (0, 0)-(5000, 50)

LET x = 1000

LET y = 10

FOR N = 1 TO 12000
xprime = .1 * x -.00001 * x * x -.004*% x * y
X =X + .1 % xprime
yprime = -.04 * y + .00002 * x * y
y =y + .1%yprime
PSET (x, y)
NEXT N

PRINT x, y

Running the program gives the picture in Figure 17, which
makes it clear that z and y are oscillating about a fixed point, with
the amplitudes of the oscillations slowly dying out.

To sketch the trajectories beginning at the values (2000, 10),
(4000, 10), (6000, 10) and (8000, 10), we run the program following.

DEFDBL A-Z
SCREEN 12
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Figure 17. The trajectory of equation (9)
beginning at (1000, 10)

WINDOW (0, 0)-(10000, 50)
FOR K =1 TO 4

LET x = 2000 * K

LET y = 10

FOR N = 1 TO 12000
xprime = (.1 - .00001 * x - .004 * y)*x
X =x + .1 * xprime
yprime = -.04 * y + .00002 * x * y
y=y+ .1 * yprime
PSET (x, y)

NEXT N

NEXT K

The resulting picture, Figure 18, strongly suggests that all tra-
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jectories in the first quadrant, except those on the axes, tend to the
point (2000,20).

y A

40 T
30 T
20 T

10 7T

X
+ ; + ; )
t t + t

2000 4000 6000 8000 10000

Figure 18. The Trajectories of equation(9) beginning
at (2000,10), (4000,10), (6000,10) and (8000,10)

To sketch the vector field, note that the arrows are vertical on
the lines z = 0 and .1 — .00001z — .004y = 0 and horizontal on the
lines y = 0 and —.04 4 .00002z = 0. Simplifying, the arrows are
vertical on the y-axis and the line y = —.0025z + 25 and horizontal
on the z-axis and the line z = 2000. We have sketched this, together
with some representative arrows (hugely magnified) in Figure 19.

The Lotka-Volterra model

Historically, a model of great importance was the so-called
Lotka-Volterra model. It was developed independently by the Ital-
ian mathematical physicist Vito Volterra in 1925-26, and by the
mathematical ecologist and demographer Alfred James Lotka a few
years earlier. Lotka had observed that the populations of several
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Figure 19. The vector field defined by equation (9)

species of fish in the upper Adriatic oscillated in a regular way. The
model we introduced above predicts some oscillations which die out
as the populations approach a steady state. The Lotka-Volterra model
predicts oscillations which do not die out. Although this model is
clearly flawed (as we shall see), it is still of great importance in
ecological modeling.

To describe the model, we stick with rabbits and foxes. As
above, we let = be the number of rabbits and y the number of foxes.
We make the following assumptions regarding the rates of change z’
and y’ of z and y.

¢ The birth rate of rabbits is proportional to the number of rabbits.
(This is clearly unrealistic if there are no foxes around and the
number of rabbits is large — if there are no foxes, it predicts that
the number of rabbits grows without bound.)
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e The death rate of rabbits is proportional to the number of rabbit-
fox interactions. (Rabbits never die of “natural causes”; they
just get eaten.)

o The birth rate of foxes is proportional to the number of rabbit-
fox interactions. (The better fed the mother fox is, the more
viable offspring she will produce. In lean times, predators
simply don’t reproduce.)

o The death rate of foxes is proportional to the number of foxes.

The following system of equations incorporates these assump-
tions
z' = az — bxy

(10)

, —_—

Yy = —cy+dxy

where a, b, ¢, and d are positive constants.
Suppose we measure the time ¢ in months, and suppose that

a = .1 rabbits per month per rabbit

b = .004 rabbits per month per rabbit-fox
¢ = .00002 foxes per month per rabbit-fox
d = .04 foxes per month per fox

This leads to the model

' = .1z — .004zy
, (11)

y = —.04y + .00002xy.
To see what happens, we start off with 2000 rabbits and 10 foxes,
then with 4000 rabbits and 10 foxes, then 6000 and 10, then 8000
and 10. The following program plots the corresponding trajectories
(over a period of 100 years).

DEFDBL A-Z

SCREEN 12

WINDOW (O, 0)-(10000, 100)
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LET t =0
FOR K =1 TO 4
LET x = 2000 * K
LET y = 10
FOR N = 1 TO 12000
xprime = .1 * x - .004 * x * y
x = x + .1 * xprime
yprime = -.04 * y + .00002 * x * y
y =y + .1 * yprime
PSET (x, y)
NEXT N
NEXT K

Running the program gives the results shown in Figure 20.

"A

10 «\\\\‘- R

2000 4000 6000 8000

Figure 20. The trajectories of equation (11) through
(2000,10), (4000,10), (6000,10) and (8000,10)
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We see that the trajectories are closed curves, indicating that the
populations of the rabbits and the foxes exhibit cyclical behavior —
their numbers rise and fall in a regular manner, returning periodically
to their original values.

The Lotka- Volterra equations give rise to cyclical behavior and,
at first blush, seem to give some indication of how cyclical changes
in population might result. However, there are a number of diffi-
culties with the equations. First, killing a few foxes creates huge
variations in the maximum number of rabbits. In data taken from
actual environments, wild swings in population size are not always
observed. Secondly, in the absence of foxes, the equations imply that
the number of rabbits will keep growing forever. This is patently
absurd.

Structural Stability

The most serious difficulty with the Lotka-Volterra equations
involves the subtle, but extremely important, notion of structural
stability.

We say that a system of equations is structurally stable if
arbitrarily small changes to the equations do not change the nature
of the solutions.

To explain this, consider again the specific example (11) of
the Lotka-Volterra system studied above. Changing one or more of
the coefficients .1, -.004, -.00002, .04 slightly, by amounts within

4.000001, say, does not change the nature of the solutions too much
— they are still closed curves. (Verify this by a writing a program to
sketch solutions of

z’' = .0999999z — .004001zy
y' = —.04y + .000021zy,

say, beginning at (2000,10), (4000,10), (6000,10) and (8000,10).)
However, it would be a mistake to assume that this means that system
(11) is structurally stable: .1, -.004, -.00002 and .04 are not the only
coefficients that should be considered. We could have written (11)
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¢’ = .1c — .004zy + 022 + 022y + ...

) 2, 0.2 (11)
y = —.04y + .00002zy + 0y° + 0z°y + ...,

which makes it clear that 0 occurs a lot of times as a coefficient. If
we change the coefficient 0 of z2 even by the smallest amount, say
to -.000001, then we get the system

¢’ = .1z — .004zy — .000001z%(+0z2y +...)
y' = —.04y + .00002zy(+0y? + 02y + ...),

which has solutions of an entirely different nature. In fact, the
behavior is similar to that described in equation (8) — after a few
oscillations, the populations settle down to fixed numbers. Thus the
trajectories of the system change radically by changing the equations
slightly. They go from being a set of nested closed curves to a
set of curves all of which spiral into one point. ( Verify this by
writing a program to check it.) The same would be true if we took
the coefficient of z2? equal to -.00000001 or -.0000000001 or any
negative number, no matter how small.

Had we taken the coefficient of 22 to be any positive number,
no matter how small, the trajectories would all spiral outward from a
single point leading to populations of rabbits and foxes which grow
without bound.

This means the Lotka-Volterra system (11) is not structurally
stable — the same reasoning can be used to establish that no systems
of the form (10) are structurally stable (changing the coefficient of
z2 will change the nature of the solutions.

There is a wrinkle worth pointing here. Namely, no term involv-
ing pure powers of y (including constants) can occur in the equation
for £’ (and no term involving pure powers of = can occur in the
equation for y’. Thus it would not make sense to say that we were
going to test for structural stability of the system (11) by changing
the coefficient O of y in the equation

¢’ = .1z + 0y — .004zy + 0z + 0z%y + ...
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to a nonzero number. The reason is that such an equation would not
satisfy the biological constraint that ' = 0 when = = 0 (if there are
no rabbits, they can’t reproduce, and their rate of change must be
0). However, there is no biological reason why the coefficient of the
term z? should be 0. In fact, there are good reasons why it should
not be. If the coefficient of z? (and every other larger power of z) is
0, it can be shown that these equations say that if there are no foxes,
the population of rabbits will increase indefinitely, But this cannot
happen (either food or space will eventually run out).

It can be shown that all the other systems of equations we have
studied (the logistic equation (2) of Chapter 1 and the competing
species system (3), the symbiotic system (6) and the Lotka-Volterra
system with bounded growth (8) of this chapter) are structurally
stable (in the set of systems for which 2’ = 0 when z = 0 and
y’ = 0 when y = 0). The techniques involved are far outside the
scope of this manuscript

Generally speaking, biological systems should always be mod-
elled by structurally stable systems. The reason is that no two bi-
ological systems can be exactly the same, even from day to day.
Thus systems of equations exactly describing two similar biological
systems, or the same system at different times would have to have
slightly different coefficients. Yet the behavior in similar systems
is similar. This suggests that small changes in the equations do not
change the nature of the solutions. That is, the system of equations
should be structurally stable.

The same rule of thumb holds for modelling situations in other
areas in which one observes regularities in behavior, but in which
there are likely to be large numbers of confounding factors which
are difficult to quantify. The one notable exception is in the physical
sciences — here one often knows the equations exactly precisely
because they apply to situations which are simple compared with
biological systems.

There is another good reason to insist on structural stability of
the systems of equations being used. The purpose of modelling is
to get a good idea of what will happen to a system over the long
term: will a certain species die out? what would happen if the fox
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population on an island were halved? The process of modelling is
not used to generate specific numerical predictions, but to explore
a complicated system and to see what the possibilities are. In such
cases, one has very little idea of anything other than the magnitude
of coefficents — some times not even that. Any conclusions that one
draws cannot be dependent on accidents in the way the coefficients
have been chosen.

Other Predator-Prey Models

The following predator-prey model, due to R.M. May, is an
attempt to incorporate more natural assumptions regarding the effects
of encounters between predators (foxes) and their prey (rabbits). As
we will see, it predicts oscillatory behavior, but that behavior is rather
different than that predicted by the Lotka-Volterra model. the sense
that we have defined above.

In order to work with quantities which are roughly the same size,
we let z be the number of hundreds of the rabbits (alternativley, the
bimass of the rabbits in units of one hundred times the average
rabbit size) and y be the number of foxes (or the biomass of the
foxes in units of average fox size). Thus, z = 5 means that there are
500 rabbits. We make the following assumptions about the rates of
change of the rabbit and fox populations.

¢ In the absence of foxes, the rabbits grow logistically.

e The death rate of the rabbits is proportional to z and y when
x is small, but only to y when z is large. (This is intended
to model a situation in which a small number of rabbits will
be more widely scattered and, hence, able to hide more easily,
whereas a larger number of rabbits will mean that the rabbits
will be easily caught by the foxes.)

o The rate of change of the fox population is also logistic, but the
carrying capacity is proportional to the number of rabbits.
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These assumptions lead to the following equations for z’ and y’

r_ _r, cxy
z' = az(l b) 1 d’

where a, b, c,d, e and f are positive constants.
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so that when z is small (and, in particular, smaller than d), z/d is
small and
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Thus the death rate ey y of the rabbits is approximately equal to
x
c
=T
d y’

hence proportional to zy. In order to see what happens here, take
a = .6,b =10,c = .5,d = 1,e = .1 and f = 2 and start with
with 2000 rabbits (so z = 20) and 10 foxes. We modify one of our
programs above. After a little experimentation to get the window
size right, we obtain the following.

DEFDBL A-Z

SCREEN 12

WINDOW (0, 0)-(20, 20)

LET x = 20

LET y = 10

FOR N 1 TO 1200
xprime = .6%x*(1-x/10)-(.5%x*y/(x+1))
x =x + .1 * xprime
yprime = -.1 * y *(1-(y/(2%x))

64



y =y + .1l*yprime
PSET (x, y)
NEXT N

Running this program gives the following output. We have also
sketched the trajectory starting with 400 rabbits and 4 foxes.
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Figure 21. The trajectories of system (13)
starting at (20,10) and (4,4)

After a remarkably short period the populations settle down to
cyclical behavior. Moreover, this behavior is the same no matter
at which point we start. Note that the trajectories wrap themselves
onto a single ‘closed’ trajectory. The word ‘closed’ refers to the
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fact that there is no beginning or end of the trajectory — it is like a
misshapen circle. Such a trajectory is called a limit cycle. This is
a new type of equilibrium behaviour — instead of settling down to a
fixed population of predators and preys, the populations settle down
to a cyclical behavior which is the same for all initial states in some
region of the state space. There is an equilibrium here, but it is one
that is in motion.

Exercises for Predator-Prey Systems

Exercise 1. Sketch the vector field corresponding to-the general
system (8). What general conclusions can you draw?

Exercise 2. Invent an argument to show that the orders of magni-
tude of the parameters we chose in equation (8) to get equation (9)
are reasonable. For example, rabbits are known to be tremendously
prolific. Show that if you suppose that, without the foxes around,
and with a small population, the average rabbit lives 40 months and
the average female produces one litter of 3 rabbits a year, you get
the value of a we chose above. Ask yourself what sort of carrying
capacity for the rabbits is reasonable, how many rabbits per month a
fox is likely to need to eat (try 4 to start), and so on.

Exercise 3. Sketch z and y as functions of time along each of the
four trajectories of equation (11) beginning at (2000,10), (4000,10),
(6000,10) and (8000,10) above (you will have to modify the program
to plot z and y as functions of ¢).

Exercise 4. How long does it take for the populations to return to
their initial values for each of the four initial values in the previous
exercise?

Exercise 5. Sketch the vector field corresponding to the system
represented by equation (11). What will it look like for an arbitrary
system of equations of the form given by equation (10)? Note how
difficult it is to tell from the vector field whether the trajectories
spiral in to an equilibrium point or whether they close up. Can you
think of an argument to distinguish the two cases?
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Exercise 6Sketch some of the trajectories of the system

' = .1z — .004zy — .000001z%(+0z3y +...)
y' = —.04y + .00002zy(+0y® + 0%y +...).

Explain why this shows that system (11) is not structurally stable.

Exercise 7. Show that the system

' =—y

Y=z

is not structurally stable (Hint: first, sketch the solution curves of the
system.)

The Brown Tree Snake again

The assumptions of the predator-prey models do not apply to
the brown tree snake. The reason is that the brown tree snake has
an extremely varied diet and does not limit itself to one species.
As we mentioned, the snake has almost completely wiped out the
bird populations on Guam. Why then, has the snake population not
dropped? There are at least two reasons. The first is that while the
snake can consume enormous quantities of prey at one go (one snake
was found inside a bird cage with four bumps — it ate all the birds
in the cage in one night), it can also live for a long time on almost
nothing. The second is that while the snake seems to clearly prefer
birds, it also feeds on lizards, such as geckos and skinks, and small
mammals. Julie Savidge showed that there was a noticeable drop
in the small mammal population on Guam. The fact that the snake
can live on skinks and geckos is bad news — these animals have
an enormous reproductive rate and quite likely will allow the snake
population to maintain its bloated size. It seems likely that because
of the absence of large prey, not as many snakes will grow to their
full eight foot size. However, there will be just as many four foot
snkes.
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There is mounting concern about the snake in Hawaii. There
are no snakes native to the Hawaiian Islands. However, there have
been at least six documented brown snake sightings. One was found
crawling in the Pan Am customs area of Honolulu International
Airport (and killed by a Pan Am employee). A second was found
dead in 1986 near an aircraft hanger at the Barbers Point Naval Air
Station on the other side of Oahu. Another two were found in 1989
at Hickham Airforce Base (also on Oahu), one clinging to a fence
guy wire near a stream (an Army sergeant beat it to death with a
piece of metal), the other dead beneath a cargo plane. Two more
were found dead near the runway at Honolulu International Airport
in 1991. In all these cases, the snake had apparently stowed away
on a flight from Guam to Oahu. A number of other sightings have
been reported, but no snakes were found.

There are two commercial flights a day from Guam to Hawaii
and the military averages 10 flights a week. In addition, military fam-
ilies are regularly transferred from Guam to Hawaii along with their
personal goods, cars, furniture, etc. The possibility of a snake getting
through undetected among personal effects is extremely worrisome.
Once established on Hawaii, it is widely agreed that the snake would
have a field day. Hawaii has a fauna that is composed of a lot of
introduced species (for example, rats, mice, lizards, doves). More-
over, some of these species have huge populations — there are little
Chinese doves everywhere. The brown snake could reach population
levels that make Guam look sickly.

The Hawaii Electric Company has funded a number of programs
to make people aware of the problem. In addition, the Hawaiian
Department of Land and Natural Resources has set up seven SWAT
(Snake Watch and Alert Teams) teams, two on Oahu and one each on
neighbor islands, for the purpose of tracking down and eliminating
introduced snakes.

Ecosystems with more than Two Species

Real ecosystems involve far more than two species. In such
cases there will be more than two quantities in which we will be
interested and we can no longer think of a state as a point on the plane.
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Fortunately, the cartesian correspondence between real numbers and
points on the line, and between pairs of real numbers and points on
the plane can be extended.

To specify a point in space, we choose an origin and three lines
(or axes) intersecting at the origin. Then every point can be given as
a triple of numbers and conversely. We do not have direct sensory
experience of spaces of dimension higher than three. However,
we can define 4-space to be the geometrical object corresponding
to quadruples of numbers and think of each quadruple as a point
in 4-space. There is no reason to stop with four: we define 5-
space to be the geometrical object whose points are quintuples of
real numbers, 6-space to be the geometrical space whose points are
sextuples of numbers, and so on. If n is any positive integer, we
define n-dimensional space to be the set of n-tuples of real numbers
and denote it as R™.

Now, if we were trying to model an ecological system with 10
species, say, we would need 10 variables z,z2,...,T19, Where z;
is the number of members of species 1, x5 the number of members
of species 2, and so on. By what we’ve just said we could think of
the 10-tuple of numbers (z1, ..., T10) as a point in R1%, We refer to
a point of R10 as a state of the system. Of course we can’t visualize
10-dimensional space directly, but the geometric intuition we bring
from dimensions one to three often allows us to think geometrically
about systems of equations in ten variables.

In analogy with the case of two species, we would then try
to find equations giving the rates of change z,...,z{, in terms
of 1,...,710. As in the case of two variables, we could think
of the 10-tuple (z,...,z},) as the rate of change of the point
(z1,...,Z10) and imagine it as an arrow beginning at the latter.
Thus we could view the ten equations giving zi, ... , Ty in terms
of z1,...,Z10 as associating to each point (x;,...,Z19) a rate of
change (z},...,2]y); that is, as defining a vector field on the state
space R, A trajectory (or solution) of these equations starting
at a point (z1(0),...,z10(0)) is the set of (z1,...,z1p) in R0 gt
subsequent times. This is a “curve” in R10.

We should point out that the number of variables need not
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Figure 22. The correspondence between points in 3-space
and triples of numbers

correspond to the number of species in an ecosystem. In more
complicated models, we might want to consider a single species as
composed of three (or more different) types of individuals: perhaps
the very young, mature adults, and the very old. Here, three different
variables would correpond to a single species, and it is not difficult
to imagine that the rates of change of each of the subgroups would
be different. Such models are called models with age structure.

Summary

We did four things in this chapter.
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Figure 23. A point (210,315,405) with velocity (15,-10,8)

¢ We identified two quantities in which we were interested.

e We wrote down equations for the rates of change of these quan-
tities.

e We used these equations for the rates of change to describe how
the quantities behave as time passes.

e We introduced a geometric interpretation of pairs of quantities,
and rate equations.

In all cases, the quantities z,y in which we were interested
were the numbers of members of a species. Depending on different
assumptions placed on the interaction between z and y, we exhibited
a number of different pairs of equations for 2’ and y’. As in the case
of one species, once we knew the value of z and y at a fixed time,
we were able to use the equations for the rates of change z’ and v’
to figure out what = and y were at any subsequent time.
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Geometrically, we think of the pair (z, y) as a point in the plane
and call it a state. The two equations for z’ and y’ are then thought
of as assigning a pair (z’,y’) of numbers to each point in the plane.
We think of the pairs (z’,y') as the rate of change of the point (z, y)
and view it as an arrow beginning at (z,y). With these definitions,
we can restate the principle we ennunciated in the last chapter.

¢ If you know a state at some time and know the
rate of change of every state (or at all times), then
you can determine the state at any time.
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CHAPTER 3 — Dynamical Systems

Introduction

We have already mentioned that the process of mathematical
modelling is the attempt to cast a piece of reality or situation in math-
ematics, with a view to using mathematical reasoning to understand
the situation being modelled. In this chapter, we try to elaborate on
this idea by building on some of the notions that we have seen in
the previous two chapters. This chapter is considerably more math-
ematical than the other chapters, so that you might want to read it
lightly first, referring back to it as needed.

The Notion of a State Space

The process of casting a situation into mathematics is that of
identifying the salient features of the situation and attaching math-
ematical objects to them. When most of us think of mathematics,
we think of numbers. And, indeed, when studying a situation math-
ematically, the first thing one does is to try to associate a number or
collection of numbers with the situation which characterizes it.

When describing snakes on Guam, we used one number: the
snake population. To describe two species, we used a pair of num-
bers, one equal to the number of individuals of one species and the
second equal to the number of individuals of the second species.
Likewise, to describe how far one is from New York on Interstate
80 takes one number, but to describe a single place in the United
States takes two numbers, your latitude and longitude. To describe
the weather at a single point and given time in the United States
requires at least five numbers: the temperature, the wind speed,
the wind direction (measured, say, as an angle clockwise from the
North), the relative humidity (the amount of moisture in the air), and
the air pressure. This still does not capture everything: we would
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probably want to know the rate of precipitation, whether or not there
is a thunderstorm around, the rate of change of the air pressure, and
so on. To describe the weather in Massachusetts at a given time, we
might decide to sample these five different numbers at one thousand
different points in the state. This would encode Massachusetts’s
weather as 5000 numbers.

In general, we prefer to think geometrically, thinking of a single
number as a point in a line R, a pair of numbers as a point in the
plane R?2, a triple of numbers as a point in 3-space R3, and 5000
numbers as a point in 5000-dimensional space R5000,

Confronted with a real situation, we would try to isolate enough
properties to distinguish among all situations of interest. In this
case, each conceivable situation corresponds to a point in R™ (or,
perhaps, to some subset of R™ - it might happen that some or all
of the numbers must satisfy some constraints. For example, when
considering two species models , the corresponding points (z,y) in
R2 had to satisfy z > 0 and y > 0. The set of all points in R™
corresponding to a conceivable situation is called the state space.

Here are some examples of state spaces.

1. Suppose we are interested in some ecological system consist-
ing of three species. Let z, y, z be the populations (or, alternatively,
the biomass) of each species. Then we model the “state” of the
system as a point (z,y, z) in R3 (more precisely, as a point in the
first octant of R3).

2. Consider a binary star system, consisting of two stars orbiting
one another. If we are only interested in the motion of the stars, we
can think of the stars as points and model the states of the system
as follows: fix an origin and coordinate axes in space (this enables
us to label all points in space). Then the position of each star can
be given by specifying three numbers — so we need six to specify
the positions of the two stars. Furthermore, we need to give three
numbers to specify the velocity of each star: the velocity in the
x-direction, the velocity in the y-direction, and the velocity in the
z-direction — thus, six to specify both velocities. We don’t need to
specify the acceleration of each, because this is given by Newton’s
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law of gravitation once we know the mass of each star. Thus, the
state of the system can be modeled as a point in R!2.

3. Consider a model of an economy in which we are interested in
the numbers of different goods produced and the numberconsumed.
Then we model the state of the system by associating one variable
to each type of good. A state of the economy would then be a point
in RY where N is the number of different goods.

Time and Change

The most enduring feature of our world and the situations that
we encounter is change. Any attempt, therefore, to understand some
aspect of reality entails understanding the changes that take place
overtime. Indeed, the ultimate goal of much mathematical modelling
is to predict change and, where possible, to suggest strategies that
allow one to direct that change.

From the point of view of mathematical modelling, taking ac-
count of time means that the numbers with which we characterize a
situation will be allowed to change as time changes. For example,
if we are driving along Interstate 80, we take account of the change
in position by giving our distance west of New York at each time.
Phrased somewhat differently, we view the number that character-
izes our position as changing. At each time it has a definite value;
that is, it is a function of time.

To be a little more formal, recall that a function is a mathe-
matical object which assigns, to each element of one set an element
of another. To take account of changes over time, we think of the
states as functions of time. In the case of the auto on I-80, the actual
distance west of New York on I-80 as a function of time. This is just
a way of saying that at each time our auto is some particular distance,’
measured along 1-80, from New York. ‘

We remark that this usage of the word “function” is very differ-
ent from one of its uses in ordinary language, where it often connotes
an unspecified dependence relation or a hazy causal link between two
or more quantities. For example, one hears that “the number of hous-
ing sales is a function of the interest rate” or that one’s “health is
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a function of diet” meaning that the interest rate affects the number
of housing sales or that one’s diet influences one’s health. We shall
never use the word “function” in this sense. From our point of
view, these phrases mean something else entirely. The first would
mean that to each interest rate, there corresponds a definite number
of housing sales (perhaps a 7.1% rate corresponds to 10317 housing
sales) — this is certainly not the case: the number of housing sales
depends on a great many other factors besides interest rate, so there
is not a definite number of them which we can associate with a given
interest rate. (We might, however, construct a model in which we
assume, for simplicity, that the number of housing starts is a function
of the interest rate.) The second phrase “health is a function of diet”
is meaningless unless we first specify what we mean by the set of
diets and what we mean by the set of healths. One way of doing
this is to construct a mathematical model in which a given set of
mathematical objects corresponds to the set of diets and a given set
of objects to healths. In summary, with our specialized meaning of
the woed “function”, neither the phrase “the number of housing sales
is a function of the interest rate” nor the phrase “health is a function
of diet” has meaning outside the context of a mathematical model.

Functions

Since we model changes in time by functions and since you will
probably have encountered the notion of a function in high school,
it is worth making a few additional remarks about them.

The type of functions most familiar to you will be the functions
which associate to each real number another real number by means
of a formula. (We often say that a function which associates to each
real number another real number is a function from R to R). For
example, we might have

f(t)=3t—2

g(t) =t* 4+ 5t — 2
t3—1

h(t)_1+t2
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There is no doubt that a formula is a convenient way of giving a
function, but we don’t always have them available. Observing the
temperature over some period of time at some particular spot in the
outdoors , defines temperature (at that spot) as a function of time,
but there will clearly be no formula. To figure out the value of
this function, the time had better be past and we had better have a
recording of the temperature. This type of function is what’s known
as a data function. Functions can also be given by recipes which
do not easily lend themselves to formulas. We shall see later that,
specifying rates of change of a quantity at every time together with
a value at some given time uniquely determines that quantity as a
function of time. This will be the most common way in which we
will encounter functions.

One other difference betweeen the type of functions we deal
with and the functions usually encountered in high school algebra
classes, is that we will usually deal with functions that associate with
each time a state: that is, which take the set R to the set R*,n > 1.
Thus, to each time, such a function associates n numbers. An
example of a function from R to R3 is

f£(t) = (t3,t = 3,1 —t2).

Note that this function can be thought of as a collection of three
functions from R to R, namely fi(t) = t2, fo(t) = ¢t — 3 and
f3(¢) = 1 —t%. In the same way, a function from R to R™ can
be thought of as a collection of n functions from R to R. There is
nothing to prevent some of these functions being data functions and
others being given by formulas or other recipes. A little later, we
shall talk about functions which associate an arrow to each state —
we shall see that these can be thought of as functions from R™ to

R".
Notation

One of the reasons for introducing geometric concepts such
as state space and points in state spaces (as opposed to collections
of numbers) is that they provide a way of visualizing systems and,

77



hence, a mental shorthand which allows us to think about complex
models. A complement to the mental shorthand is provided by good
notation. We pause here to lay out our notational conventions: we
will remind you about them frequently and you should review them
until they are second nature to you.

We have seen that a point in R™ corresponds to n numbers.
If we don’t want to specify the numbers, we write (z1,Z2,...,Zs)
(or, sometimes, (z,y), (z,y, 2), or (w,z,y,2) if n is 2, 3, or 4,
respectively). When we are thinking of the » numbers as a point in
R", we use a single boldface letter

x = (21,2,...,Z,) € R

to denote it. We name functions with letters. If we want to talk about
a function f, say, that associates to each point of a set A a point of
B, we use the notation f : A — B. If B is R™ we use a boldface
letter to denote the function. Thus we might write

a:R—-R"

The value of the function at some particular time ¢ is denoted by a(t).
If we want to emphasize that fact that a(¢) consists of n numbers,
we will write a(t) = (a;1(t),...,an(t)), (s0o a: R — R™ consists
ofthe n functionsa; : R - R,a: R—>R,...,a, : R - R)

Curves in Phase Space

To take account of the the change in weather in Western Mas-
sachusetts, each of the 5000 quantities which we think of as describ-
ing the weather must be allowed to vary. Rather than thinking of
the behavior of the weather over time as 5000 functions of time, we
think of it as a single function of time which associates to each time
a point in R3990 A point in R5900 js a “snapshot” of the weather.
As time changes, the “snapshot” moves — at each time the function
specifies a definite point in R5%00 corresponding to the weather at
that time. As the point moves, it traces out a curve in R%%%0 which
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Figure 1 The motion of a State in R? traces out a curve

represents the change in the weather over time. In this way, our
snapshot becomes a “movie”.

In modelling a situation, we begin by setting up a dictionary
which associates to every conceivable real situation a point in R™
where n is the number of quantities we need to characterize the
situation. The actual situation at a given time is a definite point in
R™. As time changes, we get different points, corresponding to the
changed situations. This defines a function from the set of times R
to the set of states R™. As time increases, we get a curve in R™ by
plotting the different points. We think of the state moving along the
curve.

Rate Equations and Dynamical Systems

In chapters 1 and 2 we saw repeated examples in which knowing
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the rates of change of points on the line or plane allowed one to
determine what happens to a state at any future time. If you know
the state at which you start and the rate of change of that state, then
you can figure out the state a short time later. But, by assumption
you know the rate of change of this latter state, so you can figure out
the state a short time later still. Continuing in this manner allows
you to figure out the state at any future time.

This observation leads directly to the general notion of a dy-
namical system. Namely, a dynamical system is a set of equations
expressing the rate of change of a state in terms of the state and time.
Symbolically, if (z1,...,z,) is the state, then a dynamical system
is a set of equations of the form

] = fi(z1,. .., Tn,t)

T, = fo(T1,. ., Tn,t).

More compactly, a continuous dynamical system is an equation of
the form
x' = F(x,t)

where F : R**1 — R™. In words, a dynamical system is a set of
equations which express the rates of change of a set of variables in
terms of the same set of variables and, possibly, time.

The word “system” in the phrase “dynamical system” refers to
the system of equations explicitly giving the rates of change of all
the state variables. The whole point of the definition is that if we
know the values of the variables characterizing a state at some time,
then we can compute the rates of change of these variables. Once
we can compute these rates of change we can compute the values of
the variables at subsequent times.

The following sets of equations are examples of dynamical

systems.
!
w =3t
' =3z +y ¢’ = 3zy ,
a. , b. 5 c. T =3x—-y
y =2 y =z -1 /
y = zywt.
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The following sets of equations are not dynamical systems.

!
w = 3zt
' =3z +y =3 -y ,
., e , f. =3xz-y
y = 2yzt Yy =z —t ,
y = zywt.

In the sets d and f we need extra information to compute the
rates of change. In d, we can’t compute z’ and y’ without knowing
z. If we gave z as a function of z,y,t or added an equation giving
2’ as a function of z, y, z, ¢, then we would get a dynamical system.
Likewise, in f we don’t have an expression for z or 2’. In e, we
would have to solve for /. While it is not difficult to do this, we
reserve the phrase “dynamical system" for systems in which the rates
of change are given explicitly in terms of the underlying quantities.

Vector Fields and Autonomous Dynamical Systems

A special role is played by dynamical systems, such as a above,
which do not explicitly involve time. Such systems are called au-
tonomous. They have the form

where F : R™ — R™. In terms of components

iL"l = f](il?l,...,.’L'n)

x:‘l, = fn(xlv"aa:n)'

As we indicated in the last chapter, there is a nice geometrical way
to picture these systems. We imagine the system associating to
each point x the arrow F(x). So, for example, the system a above
associates to each point (z,y) of the plane, the arrow (z/,y’) =
(3z+y, 2y). So, tothe point (1,3) it associates the arrow (3-1+3, 2-3)
= (6, 6). At the point (1, 1), we have the arrow (4,2); at the point
(-1,0) the arrow (-3,0); at the point (0,-1), the arrow (-1, -2). We
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Figure 2. The vector field (z/,y’) = (3z + y,2y)
at selected points

have sketched the arrows at these points in Figure 2. Every point has
an arrow attached to it which represents the rate of change at that
point. (Of course, we can’t draw infinitely many arrows any more
than we can list all the points in R%). We can think of all the points
as moving with the velocities given by the arrows.

A set of arrows attached to every point of R is often called
a vector field. Thus, an autonomous dynamical system is a vector
field. If we are at some point of R™, then the point moves along a
curve in such a way that its rate of change is the arrow assigned to
it by the dynamical system. These arrows are necessarily tangent
to the curve along which the point moves. Curves that satisfy the
property that they are tangent to the arrows of a dynamical system
are called integral curves or trajectories of the dynamical system.
Given an autonomous differential equation, the geometric way of
describing our method of finding what happens to a point is to start
at the point, follow the arrow at that point for a short period of time,
stop, follow the arrow at the new point for a short period of time,
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Figure 3. A trajectory of a dynamical system
stop, and so on.

Nonautonomous Dynamical Systems

Finally, any nonautonomous dynamical system can be consid-
ered to be an autonomous dynamical system by introducing another
variable. For example, consider the nonautonomous system b above:

z’ = 3xy

y =z —1.

Simply introduce a new variable z and write z = t. The rate of
change 2’ of z with respect to ¢ is just one unit per unit time. (Since
z = t, in a single unit of time, 2z changes by one unit.) So we can
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rewrite the system as the autonomous system

!
/

4
/

3y
m —
1

N 8

in which we have treated time as an extra variable. Thus, we have
two different ways of viewing a nonautonomous system: as a vector
field on a space with one larger dimension or as a vector field on the
state space in which the arrows change with time.

The Process of Modelling

With the discussion above in mind, and the examples in the last
two chapters in hand, we can now be much clearer about what math-
ematical modelling is. For us, the construction of a mathematical
model consists of the following.

1 ) Setting up a correspondence between possible situations and
points in R™. In particular, this means identifying a set of n
properties to which numerical values can be assigned and which
uniquely characterize the situation. In this case R™ (or some
subset of it) becomes the state space.

2 ) Finding equations which express the rates of change zj, ...,
z, in terms of the variables z;,. . ., z,, identified in step 1) and,
possibly, time. In other words, finding a dynamical system
which expresses the rates of change of the relevant variables.

Informally, the dynamical system is often referred to as the
model. We will avoid this usage, because we wish to emphasize that
step 1) is an essential part of any model. It is also worth pointing
out that the above is a rather narrow view of what mathematical
modelling is — it refers only to modelling by dynamical systems.
Dynamical systems are not the only, and in some cases not the most
desirable, way to model phenomena.

We hasten to make two comments. Any model is necessarily a
caricature in the sense that no mathematical model can be a complete
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description. Just as a historian seeking understanding of, say, a
certain event in World War I sifts and selects facts, suppressing
some and according others great significance, so, too, an individual
modelling a situation selects certain phenomena and characteristics
of those phenomena and ignores others in search of insight into the
situation under study. Modelling is a dynamic process — greater
insight frequently leads to new concepts which, in turn, lead to a
reconsideration of what facts and phenomena are salient. Indeed,
commonly accepted understandings of historical events or physical
or biological phenomena can vary dramatically from one time to
another.

The second comment is that the identification of a model with
a dynamical system is common, and is certainly the case we are
concentrating on in this monograph. More generally, however, a
mathematical model of a situation or context consists of a corre-
spondence between certain aspects of the situation and a class of
mathematical objects, together with a rule which expresses how
these mathematical objects change. The mathematical objects one
uses need not be numbers or collections of numbers — they might be
functions, or geometric objects such as shapes, or algebraic objects,
or even logical propositions.

The tools of a historian, or a social scientist, are his or her
language, its words or grammar, and the disciplinary concepts forged
out of that language. For the individual involved in mathematical
modelling, the tools are those of mathematics, the basic mathematical
objects, their grammar (that is, the rules for operating on them), as
well as more specialized mathematical concepts. The historian needs
to check carefully that the language he or she uses is appropriate to
the situation being studied. So, too, the mathematical modeller
needs to check carefully that the mathematical concepts he or she
uses provide a good fit with the reality being studied. It is important
to make sure that not too much violence is done in trying to graft a
dynamical system onto reality. Some aspects of real situations just
are not quantifiable in any reasonable sense.
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Equilibrium points, limit cycles, and attractors

In the two-species models we presented above, the state could be
given by specifying two numbers. This meant that we were dealing
with vector fields on the plane R?. We have already pointed out
that these models are very simplified — they do not take into account
the age structure of the population, for instance. Nevertheless, we
saw that even such simple models gave us useful insights. They also
give us insight into what to expect in much more general dynamical
systems.

In the models we used in the last chapter, we were usually led
ineluctably to ask what happens to a trajectory over a long time.
Typically trajectories do not go off further and further out on the
plane (i.e. they do not extend to infinity). A trajectory which does
not stay in some bounded region corresponds to the value of at least
one of the numbers characterizing the state going to infinity, and this
usually does not happen in real systems if the number which tends
to infinity refers to position, or number of individuals, or mass, or
some other physical quantity.

If a trajectory does not “go off to infinity”, it is reasonable to ask
where it goes. In the plane, there is a complete answer. To explain
it, we will need to introduce some terminology. The first singles out
those points to which trajectories can tend.

Definition. A point xq of the plane R? (more generally, of R™)
will be called an equilibrium point or rest point of a dynamical
system F : R? — R? (more generally, of F : R® — R™) if
F(xg) = 0. That is, if the arrow the dynamical system assigns to
the point xg is the zero vector.

More generally we say that a subset of R™ is a limit set if every
point in it occurs as the limit of some set of trajectories, either as
t — oo oras —t — oo. So equilibrium points are examples of limit
sets. A second type of limit set is the so-called limit cycle, which we
encountered in Robert May’s predator-prey model in Chapter 2.

Definition. A trajectory of a dynamical system is closed if any
point of the trajectory comes back to itself after finite time under the
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motion of the dynamical system. Closed trajectories which are the
limit of some (nonempty) set of trajectories, either as ¢ — oo or as
—t — o0, are called limit cycles.

Closed trajectories will lie in some bounded region of the plane
(or, more generally, R™) and contain no rest points. Closed trajecto-
ries on the the plane, divide the plane into two pieces: an inside and
an outside.

A set is said to be compact if it is bounded and if it contains any
point which is a limit of points in the set (that is, if the set contains all
its boundary points). Perhaps the most important theorem regarding
dynamical systems in the plane is the Poincaré-Bendixson theorem.

Theorem (Poincaré-Bendixson). Any non-empty compact
limit set of a dynamical system x' = F(x), F : R? — R?
on the plane, which contains no equilibrium point, is a closed
orbit.

The Poincaré-Bendixson theorem is highly non-trivial. For
example, if we have a dynamical system on the plane and we find
a region (with finite area) whose boundary has the property that the
arrows at each point of the boundary point into the region, then it
easily follows from the Poincaré-Bendixson theorem that the region
contains either an equilibrium point or a limit cycle.

Another consequence of the Poincaré-Bendixson theorem is
that in the long run, states of dynamical systems in the plane either
settle down to a point (in which case, both numbers characterizing
the state tend to fixed values) or to a steady cyclical behavior (in
which the values of the quantities oscillate periodically about some
fixed values.)

There is another observation that we can make based on the
systems we have already examined. Namely, the limit sets of most
interest are those that are such that trajectories through all nearby
points tend to the limit set as ¢ — oo. Such limit sets are called
attractors. (Limit sets with the property that all nearby points tend
away from the set as { — oc are called repellors). For example, in
the Lotka-Volterra system described by equation (12), there was is
an equilibrium point (0,25), but it is not of physical interest. The
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slightest change in either z or y and the system sweeps off to one
of the other equilibria points. If we didn’t have the equations in
front of us, we wouldn’t even suspect that there was a rest point — it
is unobservable for all practical purposes. A second observation is
that a point in phase space moves fairly quickly towards an attractor.
The moral here is that the part of a dynamical system which we are
most likely to observe will reflect the parts of the system close to
attractors. This is one of the departure points for René Thom’s theory
of models and is a key insight for the understanding of “catastrophe
theory”.
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Appendix to Chapter 3

The following material is, strictly speaking, an aside. However, the reader
may find it useful when reading other books on modelling.

Discrete Dynamical Systems

There is another type of dynamical system, intimately related to the ones
we have defined above. To define them, we suppose that we measure time in
discrete units. These time units might be hours, seconds, tenths of a second,
years, centuries, whatever, but once fixed, we only allow ourselves to consider
integer multiples of them. As before, we represent the state of a system as a point
in x € R". We denote the state of the system at time ¢t = 0 by x[0] and the
state of the system at the kth time step as x[k]. We use square brackets to remind
ourselves that we are talking about numbers of time intervals and use & to denote
time instead of ¢ to remind ourselves that we are only allowing integer values of
time. If, for example, the units of time were years, the value of x one decade after
the inital time would be denoted by x[10] and the value two centuries previous to
the inital time by x[~200]. It would not make any sense to speak of the value of
x after a half a year: that is, we do not allow ourselves to write x[.5].

A (nonautonomous) discrete dynamical system is a system in which the
state at any time depends only on the state at the time before. That s, it is a system
which can be written in the form:

x[k + 1] = F(x[k])

where F, is a function from R™ to R™ foreach k € Z. An autonomous discrete
dynamical system is an equation of the form:

x[k + 1] = F(x[k])

where F is a function from R” to R".

Note that there is no talk of rates of change in a discrete dynamical system:
we get from the state at one time unit to that of the next by some rule applied to the
former. Any function F : R” — R™ defines a (autonomous) discrete dynamical
system. You merely set x(k + 1] = F(x[k]). That is, you take any point and
repeatedly apply the function.

Note that a discrete dynamical system, like a continuous dynamcial system,
is completely deterministic in the sense that if you know the initial state, you can
know what that state will be at any time thereafter.

Discrete dynamical systems arise from continuous dynamical systems by
assuming that rates of change are constant over some small time interval. The
moment we choose a At, we convert a continous dynamical system

x' = F(x)
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into the discrete dynamical system
x[k + 1] = x[k] + (At)F(x[K])

with time unit equal to At. Notice that the latter equation is nothing but another
way to write equation (1):

For more on the relation between continuous and discrete dynamical systems see
Hirsch and Smale’s book. For information on discrete dynamical systems in biol-
ogy, see the books of May, Maynard Smith and Murray cited in the bibliography.

Exercise 1. Consider the function F : R? — R? given by F(z;,z2) =
(.52 — .25z4, —.521). If x[0] = (4,6), find x[3] and x[4]. Write a computer
program to find x[10] and x[100]. What do you think the limit of the x[k] are as
k gets bigger an bigger? Does this limit depend on the choice of x[0]? values of
x[0]

Exercise 2. LetF : R? — R? be given by F(z1,23) = (.52, —. 721 + 73}
and consider the (continuous) dynamical systemx’ = F(x). If At = .1, explicitly
write out the corresponding discrete dynamical system.

Dynamical Systems and Calculus

Historically, the development of dynamical systems was inextricably linked
to calculus — we’ll say more about this in Chapter 4. Before the development of
the computer, to determine a future state given a dynamical system and an initial
condition, one either had to do all the computations by hand (which, while feasible
in theory, was not usually a practical option — it would take too long) or use
calculus, which provided closed form answers in certain simple cases, and which
could be used to help approximate future states in more complicated systems.

Even if you choose not to study calculus, you should be aware of some of
the commonly used terms relating to dynamical systems which are inspired by
calculus. First, the rate of change x’ of a state is often referred to as the derivative
of x with respect to time (and often denoted as x or as %—). What we are calling a
continuous dynamical system is often called a differentiable dynamical system.

If we are given an initial state and want to find the state at some time in
the future, we say that we are integrating or solving the dynamical system.
The process of integrating a system on a computer is often called numerical
integration. The very simple process we used in the examples we chose in
this chapter, namely that of choosing a At and replacing the continuous system
x’ = F(x) by the discrete dynamical system x[k + 1] = x[k] + (At)F(x[k]) is
called Euler’s method. (Euler’s method could also be described as the process
of integrating the system x’ = F(x) by iterating relation (1)). The process of
passing from a continuous to a discrete system by choosing a fixed time interval
At is called discretizing the system.
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Chapter 4 — The Greatest Mathematical Model Ever

Introduction

Most of the examples of dynamical systems we have seen up to
now have been drawn from contexts in the life sciences. We have
done this partly because the variables in the systems we examined
are quite familiar to us — we read in the papers every day about the
population of some group or another. Our presentation has, however,
reversed the order in which dynamical systems were discovered and
used.

The purpose of this section is to present some of the historical
background which underpins our current understanding of dynamical
systems and the fundamental role they play in science. The process
of constructing a set of differential equations to describe some aspect
of reality is so embedded in modern consciousness that it is easy to
forget that the equations are not absolute truths — merely constructs
which help us understand certain phenomena. Moreover, dynamical
systems have been so successful in modelling physical phenomena
that it is sometimes easy to forget that they are not the only way to
model phenomena outside the physical sciences. How did dynamical
systems come to be the pre-eminent tool that they are today?

Kepler

Our story begins on what loosely might be described as the
dawn of modern science: January 1, 1660. On that day, Johannes
Kepler hitched a ride from the provincial capital of Linz to the
imperial capital of Prague. Kepler had already distinguished himself
by writing a much admired treatise Mysterium Cosmographicum
detailing why the planets were where they were — his theory was
based on the way the five Platonic solids (the tetrahedron, the cube,
the octahedron, the icosahedron, and the dodecahedron) could be
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inscribed in one another. Kepler was one of the few individuals who
accepted the Copernican theory that the planets revolved around
the sun — he did so on purely theological grounds. To improve
his theory, Kepler needed access to astronomical data which would
allow him to compute the positions of the six planets then known.
The best available data (indeed the only reliable data) were in the
hands of the greatest astronomer of the era, Tycho de Brahe, a colorful
Dane of noble lineage, who had recently been named to the position
of imperial mathematicus (at a fantastic salary) and set up by the
emperor, Rudolph II, in a huge observatory near Prague. Brahe had
been the first individual to make systematic, daily observations of
the positions of the planets. He did this over a period of twenty years
from his former observatory, Uraniburg, on an island off the Danish
coast.

Kepler had accepted a position as Brahe’s assistant, hoping to
see Brahe’s data and use it to further his own theory. Brahe, on the
other hand, hoped to enlist Kepler’s formidable mathematical skills
to advance his own theory that the sun revolved around the earth and
that the other planets revolved around the sun. In February the two
men finally met. Here is how Koestler describes the meeting in his
biography of Kepler entitled The Sleepwalkers.

At last, then, on February 4, 1600, Tycho de Brahe
and Johannes Keplerus, cofounders of a new universe,
met face to face, silver nose to scabby cheek. Ty-
cho was fifty-three, Kepler twenty-nine. Tycho was
an aristocrat, Kepler a plebeian; Tycho a Croesus, Ke-
pler a church mouse; Tycho a Great Dane, Kepler a
mangy mongrel. There were opposites in every respect
but one: the irritable, choleric disposition which they
shared.

What follows is one of the more incredible episodes in the
history of human thought. Kepler was put to work on computing the
details of the orbit of Mars, an orbit which had stubbornly resisted
analysis. Kepler had to wait two years until Brahe’s death to gain
full access to the data from the preceding twenty years. After eight
years of Herculean labor, in which Kepler painstakingly threw out
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one long-accepted idea after another, Kepler discovered the first two
of his famous three laws. The first was that the orbits of the planets
were elliptical, not circular (it took him four years to abandon the idea
that the sun was at the center of the orbit, another two to realize that
the orbits were not circular, and another two to identify the shape
as that of an ellipse — he had tried fitting all sorts of ovals.) The
second was just as radical — the speed of a planet in its orbit was not
constant, but varied, moving faster when it was nearer the sun than
when it was further away. Kepler’s third law was published eight
years later still and gave a precise relationship between the planet’s
average distance from the sun, and the length of time it took to make
one complete orbit around the sun.

Kepler’s laws were the first instances of precise quantitative
statements regarding the planets which allowed predictions. The
three laws can be regarded as a mathematical model, although not a
dynamical system. They allow us to make many useful inferences re-
garding planetary and lunar motion. We add that Kepler’s three laws
are not labelled and are buried in his writings admidst an incredibly
lush array of metaphysical and theological musings. It is a testimony
to Newton’s genius that he was able to immediately identify them as
the central verifiable statements in Kepler’s work.

Exercise 1. An ellipse is defined to be the set of all points the
sum of whose distances from two fixed points (called foc:) is a
constant. The semi-major axis, usually denoted a is the longest
distance between a point on an ellipse and the center and the semi-
minor axis b is the shortest distance. The size and shape of an ellipse
are determined by specifying the values of any two of the following
quantities (see Figure 1).

: the semi major axis
: the semi minor axis
: the distance of the center from one focus

o o o 8

: the eccentricity (which is defined as ¢/a)
Tp . the closest distance from a focus to the ellipse
T4 : the farthest distance from a focus to the ellipse.
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Figure 1. An ellipse.

Show that this is the case by establishing the following relationships
among these quantities:

a? = b% 4 ¢
rp,=a—c=a(l —¢)
re=a+c=a(l+e)

Exercise 2. Kepler’s Third Law states that the ratio of the squares
of the periods of any two planets is equal to the ratio of the cubes of
the semimajor axes of their respective orbits. This law is also valid
for a circular orbit (¢ = 1,7, = r4 = a). Use this law, and the fact
that the moon rotates about the earth once every 27 days, to find the
distance from the earth’s center, as a fraction of the distance to the
moon, that a satellite must be to rotate in such a way that it remains
in fixed position with respect to a point P on the earth’s surface (such
orbits are called geostationary). [Hint: to stay in a fixed position
over the Earth’s surface, a satellite must be in a circular orbit in the
plane of the Earth’s equator and its period of revolution must be equal
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to that of the Earth on its axis.] The most useful communications
satellites are in geostationary orbits — why do you suppose this is?
If the mean radius of the moon’s orbit is 239,000 miles, what is the
radius of a geostationary orbit?

Galileo

Our story turns now to Galileo, a contemporary of Kepler. The
details of Galileo’s life are probably familiar enough to you not
to bear recounting. Galileo was the first person to turn the newly
discovered telescope on the planets. He was the first to see the moons
of Jupiter and a firm believer in the Copernican theory. Galileo’s
most enduring contribution to scientific thought, however, was his
theory of motion. Galileo’s observation of the heavens allowed
him to formulate a fundamental principle which is now known as
Galileo’s Principle of Inertia. It says that an object moving in a
straight line with a given speed will continue to move in that
straight line with that same speed for all time, unless acted on
by an external force.

At the time, this principle was highly non-obvious. Our experi-
ence with motion on earth would tend to lead us to believe that if we
set an object in motion in a given direction with a given speed, say
by pushing it, it will tend to slow down (unless we push it downhill
or drop it, in which case it will speed up). And, indeed, in those
days the word inertia referred to an object’s tendency to resist mo-
tion. Nowadays, every schoolchild learns that it is friction that slows
objects down. We are familiar with the notion that an object thrown
in space will continue with its same speed in straight line, unless
under influence from the sun or a planet. We learn these things early
enough so that Galileo’s principle seems intuitively obvious to us.

Galileo’s principle of inertia has a very important corollary. It
says that you don’t have to explain why something, suchas a planet, is
moving. What you have to explain instead is why it is not moving in
a straight line and why it is not moving with constant speed. In other
words, what you have to explain is change in velocity, not change in
position. Here, it is worth emphasizing that we are again using the
word velocity to refer to both the speed and direction in which a body
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moves. Kepler had made an attempt at explaining the motion of the
planets (that is, of deriving his three laws from more fundamental
principles). However, he thought he had to explain why the planets
didn’t slow down and so he was looking in the wrong direction for an
explanation. (His explanation of planetary motion is interesting. He
thought that the planets were always trying to slow down: what kept
them in motion was that the sun turned and dragged the planets along
with it — the effect of the sun diminished with distance, he thought,
so that the further a planet was from the sun, the slower it would go.
He visualized the sun as a circular broom with long flexible radial
spokes attached that swept the planets around with the sun and which
bent backwards the further out from the sun they extended.)

Newton

To Newton is attributed the statement following.

If I have seen a little farther than others, it is because
I have stood on the shoulders of giants.

And towards the end of his long life, Newton offers us the following
assessment of himself.

I do not know what I may appear to the world; but
to myself I seem to have only been like a boy play-
ing on the seashore, and diverting myself in now and
then finding a smoother pebble or a prettier shell than
ordinary, whilst the great ocean of truth lay all undis-
covered before me.

Two of the giants on whose shoulders Newton stood were
Galileo and Kepler and two of the pebbles which he seized were
Kepler’s three laws and Galileo’s principle of inertia. Using these
and his own development of the calculus, Newton changed utterly
the way in which we view our world and laid the groundwork for
the technological advances and modes of thought which characterize
our era.

Newton realized that Galileo’s principle of inertia meant that
what had to be explained was a change in the direction or speed of
an object. So any time an object changed velocity, something had
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to cause that change. Newton called the cause of this change the
force on the object. The simplest possible assumption you could
make is that the force is equal to the rate of change in velocity. But
experience tells us that the more massive an object, the more difficult
it is to change its speed or direction. (If you are standing midway
down a hill, you will find it more difficult to stop a fully loaded
tractor trailer that is rolling towards you than a marble.) Thus, the
next simplest assumption you could make is that the force is the
mass times the rate of change of the velocity. Newton took this as
his definition of force. We write this symbolically as F = mv’,
where F denotes the force, m the mass which is assumed constant,
v the velocity, and v’ the rate of change of the velocity. The rate
of change of the velocity is often called the acceleration. Since
we visualize the rate of change of a collection of numbers (and the
velocity v is a collection of three numbers: the velocities in the z, y
and z directions) as an arrow, the acceleration can be thought of as
an arrow and, hence, so can the force.

Newton’s next insight was that, in many cases, the force could
be calculated independently of this equation. Concerning the planets,
Newton realized that something must be exerting a force on them
because they changed direction and, hence, velocity. Like Kepler,
Newton felt that the obvious candidate was the sun. Unlike Kepler,
Newton had Galileo’s principle of inertia and so he could assume
that if the sun weren’t there, the planets would just go on moving
in a single direction with a constant speed. (Kepler probably would
have agreed that they would go in a straight line, but would have
thought that they would have ground to a halt). For Newton the
simplest reasonable assumption to make was that the sun exerts a
force directly towards itself. Since the force is proportional to the
rate of change of the velocity, this meant that Newton assumed that
an object at rest above the sun would move directly towards the
sun with ever increasing velocity Think of what would happen if
you shot something directly toward the sun — our experience with
objects falling on earth suggests that this is reasonable. Newton went
on to further assume that the magnitude of the force exerted by the
sun should be proportional to the mass of the planet on which it was
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acting and that it should get weaker the further out from the sun the
planet went. It was not clear how much weaker it should get — should
it be proportional to one over the distance of the object from the sun,
or one over the distance squared, or one over the distance cubed, or
perhaps some higher power? Here there was no reasonable guide,
but Newton had done experiments on light and was aware that the
illumination was proportional to one over the square of the distance
from the source. It seemed reasonable to assume that the same was
true of the force exerted by the sun. Moreover, Newton proved that
to be consistent with Kepler’s third law this had to be the case.
To sum up, Newton made two assumptions.

e The force exerted by the sun on a planet is equal to the mass of
the planet times the rate of change of its velocity.

e The force exerted by the sun on a planet points directly toward
the sun and its magnitude is equal to the mass of the planet
times a constant times one over the distance squared from the
sun.

In particular, equating the two expressions for the force, we find
that at every point of a planet’s orbit, the change in velocity points
directly toward the sun and has magnitude equal to a constant times
one over the distance squared from the sun. This suggests that we
have a dynamical system. But given a dynamical system, we know
how to find any future state given a current state and a computer!
Newton didn’t have computers, but he solved the dynamical system
anyway, inventing calculus along the way.

The Most Successful Mathematical Model Ever

Let us try to phrase this description as a dynamical system.
First, Newton’s assumptions imply that a planet will move in the
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plane in space determined by its position at any two successive times
and the sun. This is because moving off this plane would require a
change of direction not pointing towards the sun, hence a force not
pointing towards the sun and, by assumption, the force always points
directly at the sun.

Imagine that we have drawn two axes, an z-axis and an y-axis,
on the plane and that the sun is at the origin. Then the position of
a planet at any time can be given by specifying its z-coordinate and
its y-coordinate. Let v be its velocity in the z-direction and w its
velocity in the y-direction. That is, ' = v and ¥’ = w. Thus,
just as the position of the planet at any time is given by a pair of
numbers (z,y), its velocity is given by the pair of numbers (v, w).
Similarly, the pair of numbers (v’, w’) will give the rate of change of
its velocity. If we measure = and y in miles and time in seconds, then
v and w will have units of miles/sec and v’ and w’ of miles/sec/sec.

Now, Newton says the force F' the sun exerts on a planet at
position (z,y) points directly toward the sun, which is assumed to
be at the origin (0, 0), and that its magnitude is proportional to the
product of the mass of the planet and the reciprocal of the distance
from the sun squared. To express this symbolically, let’s take it a
piece at a time.

First, how can we say that the arrow corresponding to the force
points directly at (0,0)? The key observation, here, is that at any
point (z,y) of the plane, the arrow (z, y) points directly away from
the origin. We have indicated this in Figure 2 below.

Here is one explanation of why the arrow (z,y) at the point
(z, y) points directly away from (0, 0) —you may prefer to construct
your own explanation. The reason is that the point (z,y) can be
thought of as the head of the arrow beginning at (0, 0) and ending at
the point (z,y). Thus, the arrow (z, y) at the point (z, y) is the arrow
from (0, 0) to (x, y) slid out along the line joining (0,0) and (z, y)
so that it starts at the point (z,y). In sliding it out along this line, it
doesn’t change direction, and hence continues to point directly away
from the origin. Figure 3 attempts to illustrate this.

If (1,2) is an arrow at some point, then the arrow —1 - (1,2)
(which is equal to (—1, —2)) points in the exact opposite direction.
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Figure 2. The arrow (z,y) at the point (z, y)
points directly away from (0, 0)

Thus, since the arrow (x, y) at the point (z,y) points directly away
from (0, 0) (that is, the sun), the arrow —1 - (z,y) (or, what is the
same thing, (—z, —y)) points directly towards (0, 0).

The next part of Newton’s prescription says that the magnitude
of the force should fall off as one over the distance from the origin
squared. Now the magnitude of an arrow is just its length. So we first
ask ourselves how to find the length of an arrow. Thisiseasy! Justuse
the Pythagorean theorem. So, for example, the length of the arrow
(3, 1) is V32 +12 = /10. This has the same length as the arrow
(-3,-1). In general the length of the arrow (z,y) is \/z2 + y2.
The length of (—z, —y) is \/(—%)% + (—y)? = /22 + ¥2, which

is the same as the length of (z,y).
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Figure 3. Sliding the arrow joining (0, 0)
to the point (z,y) out to begin at (z,y)

Exercise 3. (a) In the two-dimensional zy plane, how far from
the origin (0,0) is the point (2,-1)? What is the distance of this point
from the point (-3,5)?

(b) In the three-dimensional zyz space, how far from the origin
(0,0, 0) is the point (2,-1, 6)? What is the distance of this point from
the point (-3, 5, 1)?

[Hint (for both parts): sketch the points, construct suitable right
triangles, and use the Pythagorean theorem.]

The length of the arrow (—x, —y) gets longer the further the
point (x, y) is from the origin. We want it to become shorter. Before
figuring out how to do this, let us first ask if we can find a way to keep
all the arrows the same length. That is, can we find a set of arrows
that point directly towards the origin and which all have length I,

101



say? Here the key observation is that if s is a positive number, then
the arrow ts - (z,y) = (sz,sy) points in the same direction and
has length s times the length of (z,y). (The length of (sz, sy) is
V(s2)? + (sy)? = /s2(2z? + y?) = s - /22 + y? if s > 0.) This
means that the way to find an arrow which points in the same direction
as a given arrow, but which has length equal to 1 is to multiply the

1 3 -
arrow by 1 over its length. Thus, —— - (3,-1) = (——, —
Y . Thus, o5 571 = (g )

points in the same direction as (3, —1) and has length equal to 1. In
particular, the arrow

1 - —Y )

_—m . (—'l', "2/) = (\/$2 n yzv \/.’I)2 +y2

at the point (z,y) points directly at the origin and has length
1.

The distance from the origin to the point (z, y) is v/z? + y2 and
we want an arrow at the point (z, y) whose magnitude is equal to the
product of the mass of a planet and the reciprocal of the distance from
the sun squared. If we let m denote the mass of the planet at (x,y)
and K the constant Newton mentions, then the arrow representing

1
Vo

2 .
the force on a planet must be m x K x ( times the

arrow above:

mK 1

F = . A=z, -
22+y? [z + 42 (—z,-y)
_( -mKzx —-mKy )

- (:1;2 +y2)3/2’ (:1:2 +y2)3/2

On the other hand, Newton’s first assumption tells us that the
force at (z,y) is m times the rate of change of the velocity (v', w’)
at (z,y). So we have

F = (mv',muw’).
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Equating the two expressions for F' and cancelling m from both sides

, —-Kz
- (22 + y2)3/2
w/ . _Ky

- (zz + y2)3/2

where K is a positive constant which must be determined experi-
mentally, and which is the same for every planet.

Notice that this is not a dynamical system. The reason is that
v’ and w' are not expressed as functions of v and w. To make it a
dynamical system, we merely have to remember that we defined v
and w by setting 2’ = v and y’ = w. If we add these two equations
to those above, we do get a dynamical system:

r =
y =w
~-Kzx
S 1
v (z% + y2)3/2 (1)
w' = ~Ky

These equations are just the mathematical statements of the two
simple assumptions that Newton made.

From what we have said in the last chapters, we know that
given (z,y,v,w) at some fixed time ¢ (that is, the position (z,y)
and velocity (v,w) of the planet at time ), we can determine the
state (that is, the position and velocity of the planet) at any future
time.

Let’s doit. Suppose, for simplicity, that K = 1 and that we have
the initial condition z(0) = 6, y(0) = 0, v(0) = 0, w(0) = .1. The
following program will plot the points (z, y) as the time ¢ changes.

DEFDBL A-Z
SCREEN 12
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WINDOW (0, 0)-(10, 10)

LET t = 0
LET deltat = .001
LET x = 6
LET y = 0
LET v = 0
LET w= .1

Xprime = v

yprime = w

vprime = -x/ ((x~ 2+y~ 2)° (3/2))
wprime = -y/((x~ 2+y~ 2)~ (3/2))
x= xt+deltat*xprime

y= y+tdeltat*yprime

v= v+deltat*vprime

w= w+deltat*wprime

PSET (x, y)

NEXT N

One thing we notice right off is that the shape changes quite a
lot as we change deltat. The answers seem to converge as we take
deltat smaller and smaller, but one eventually runs out of patience.
It can be shown that accuracy is increased if, instead of saying that the
the new position is equal to the old plus the velocity at the beginning
of the time interval (or at the end of the time interval) times the length
deltat of the time interval, we say that the new position is equal to
the old plus the velocity in the middle of the time interval times the
length. That is, x(¢t + At) = x(t) + (At) - v(t + §%). Similarly,
the velocity v at this halfway point is equal to the velocity at a time
At before (which is in the mi~dle of the preceeding interval) plus
At times the rate of change v’ of the velocity. That is, v (¢ + %) =
v(t — §%) + (At) - v'(t). There is one slight problem: what is

At

v(44)? We use the special equation v(4!) = v(0) + (5%)v’(0).

Making these modifications gives the following program.

DEFDBL A-Z
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SCREEN 12
WINDOW (-10,-10)-(10, 10)

LETt =0

LET deltat = .01

LET x= 8

LET y= 0

LET v= O+(deltat/2)*(-x/((x"~ 2+y~ 2)~ (3/2)))

LET w= .1+(deltat/2)*(-y/((x" 2+y2)~ (3/2)))
FOR N = 1 TO 12000
X = xt+deltat*v

y= y+deltat*w

r= SQR(x*x+y*y)
vprime = -x/r" 3
wprime = -y/r"~ 3
v= v+deltat*vprime
w=w+deltat*wprime
PSET (x,y)

NEXT N

We have plotted the results in Figure 4. Notice that the orbit
is elliptical, and one of the foci is (0,0) (the sun)! Just to be sure,
we plot the orbits starting at the initial states (6, 0,0,.1),(8,0,0.1),
(10,0,0,.1), (12,0,0,.1). These are illustrated in Figure 5. All the
orbits are again elliptical!

We are sweeping a rather delicate mathematical point under the
rug here. The technique that one uses to numerically integrate a set
of rate equations can be quite important. The method we outlined
above is a special case of the Runge-Kutta method, which is more
accurate than the so-called Euler (or naive) method that we have
been using up to now. (This is a standard fact proved in numerical
analysis courses — the details are outside the scope of this course.)

Exercise 4. Plot a variety of orbits with different initial conditions.
In particular, you should plot some where v # 0 at time ¢ = 0.

Exercise 5. Find the coordinates of the ends of the major and
minor axes of the ellipse sketched in Figure 4. (The easiest way to

105



Figure 4. Orbit of a planet with initial state (8,0,0,.1)
moving in accordance with (1)

do this is to modify the program to print out = and y values along the
orbit.) Using these and exercise 1, prove that the origin is one of the
foci.

Newton, of course, did not have access to computers, so that
things were not so simple for him. In what is arguably the greatest
tour de force in the history of science, Newton actually found for-
mulas which gave z,y, v, w as functions of {. He also showed that
these solutions satisfied Kepler’s three laws.

It is impossible to understate the effect that Newton’s achieve-
ment had. Few people could follow all the details, but all realized
that on the basis of two simple principles, Newton was able to deduce
what it had taken Kepler twenty years of painstaking observation and
calculation to uncover.

Nor did Newton stop here. He had a penchant for generality and
realized that there was no good reason why only the sun should attract
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Figure 5. Orbit of a Planet with Varying Initial States

the planets. Doubtless the planets attracted the sun and every other
planet: why else should the moon orbit earth? He posited that every
object exerts a force on any other object which points directly towards
the first object and has magnitude equal to a universal constant (i.e.
a constant that is the same for any two objects) times the product of
the masses of the two objects times one over the distance between
the objects squared. This is called Newton’s Law of Universal
Gravitation and is certainly the most successful model of all time.

Newton’s law of universal gravitation allows us to set up a
dynamical system which describes the motion of any fixed number
of heavenly objects which interact only among themselves. For
example, to describe the motion of a binary star with a large planet
orbiting one of the stars, we would need six variables to describe
the motion of one star, three, call them z1,y; and 2;, to give the
coordinates of its position in space and another three, call them u1, v1
and wy, to give its velocity in the z, y and z directions, respectively.
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For the second star and the planet, we would need six additional
variables each. (We emphasize that the origin is at a fixed point
of space — and not at the center of one of the stars or the planet.)
Using Newton’s law of universal gravitation, we can easily write
down a dynamical system involving the eighteen variables and use
a computer to determine a state at-any future time. The problem of
determining the future states associated with this dynamical system
is called the three-body problem. Despite continuous study in
the three hundred years since Newton’s time, there are a good many
questions that remain unanswered regarding the possible range of
behavior of the solutions. _

Fortunately, for calculations of the motions of the inner planets
in the solar system — say, for example, the orbit of Mars — very good
results are obtained by neglecting the forces of attraction of the other
planets (since they are so much smaller than that due to the Sun).

Exercise 6. Consider a single planet orbiting the sun whose initial
position is (0.5, 0.0, 0.0) and whose initial velocity is (0.0, 1.63,
0.0)). Suppose that the sun attracts the planet with a force that points
directly toward the sun, but that the force is proportional to one
over the distance of the planet from the sun (instead of one over
the distance squared). Suppose, further, that the planet exerts no
force on the sun. Compute the orbit of the planet by writing out the
position for successive time intervals of 0.001 and plot two circuits
about the sun. Do the same for a force which drops off as the cube
of the distance. Do either give closed orbits?

The Ubiquity of Dynamical Systems

The success of Newton’s Law of Universal Gravitation set dy-
namical systems on center stage. In the two centuries that followed,
it was discovered that almost all of the laws of physics could be
phrased as systems of differential equations. The rates of change of
variables were often more accessible to observation and conjecture
than the variables themselves. As the range of physics broadened,
it was discovered that construction of a useful theory usually first
involved finding variables whose rates of change were particularly
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susceptible to analysis. For example, a key step in formulating New-
ton’s Law of Gravitation was realization that the rate of change of
velocity admitted a nice description.

The success of dynamical systems in physics suggested that the
way to approach other academic disciplines was to set up dynamical
systems which allowed one to model the phenomena of interest. In
this way it was felt that other sciences could attain the predictive
success of physics.

However, the identification of variables and laws governing
phenomena outside the purview of physics has been fraught with
difficulty. It is easy to think of physical situations which require
an enormous number of variables to model as a dynamical system.
To model the solar system as a dynamical system would require six
variables for each planet, moon, and asteroid. However, physical
systems are not as complicated as those that arise outside of physics
— at least we know how to write down the equations! Moreover, it
is often clear what variables can be neglected in physical situations.
For example, we can neglect the gravitational force that asteroids,
for example, exert on other planets.

In contradistinction, an ecosystem such as a tropical rain forest
supports a huge variety of species which depend on one another in
complicated ways. If we let one variable be the number of each
species, then we would need a huge number of variables. Here,
however, it is far from obvious how to write down the equations.
And even if we could, it is difficult to see how we could ever know
the values of the variables at any one time. Even ecosystems with far
fewer species, such as those on the Canadian tundra, are very poorly
understood.

Many biological processes, such as those which describe the
respiration of an animal, or those which guide the development of
an embryo can be thought of as enormous dynamical systems. What
is surprising is that, despite the size of these dynamical systems and
despite the fact that the coefficients in the equations making up such
a system must vary from species to species and, indeed, individual to
individual, there are general qualitative similarities in such processes
in different individuals. This suggests that certain qualitative prop-

109



erties of dynamical systems are preserved by changing the equations
in various ways. The pursuit of this idea has led to some of the more
interesting mathematical research of recent years.

It also points the different ways in which modelling is used in
physics and in biology and the social sciences. In physics, we are
frequently interested in specific numerical predictions. Where will
a given planet be three years and two weeks hence? This sort of
precision is out of reach in the biological sciences — we don’t know
the equations precisely. However, we can use dynamical systems
to make qualitative predictions. Moreover, exploration of the dif-
ferent types of behavior that result under different assumptions, and
comparison with reality, often gives us insight into the rate equa-
tions variables that are most important in understanding biological
systems.
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Chapter 5 — Dynamical Systems and Determinism

The Art of Modelling

One of the lessons from physics was the importance of identify-
ing the key variables that needed to be tracked. It was the key insight
of Galileo that it was not velocity that needed to be explained, but
change of velocity. Physics set the standard which the other sciences
sought to emulate: identify the relevant variables, find the laws ex-
pressing the rates of change of these variables and express them as a
dynamical system. Once expressed as a dynamical system, we can
use a high speed computer to track states into the future.

Some chinks in this philosophy began to appear within physics
itself. With the onset of quantum mechanics, it became increasingly
clear that certain physical situations could not be modelled as points
in R™, because the quantities that one wants to measure are not
numbers. For example, the uncertainty principle implies that one
cannot measure the position and momentum of a particle at the same
time to an arbitrary degree of accuracy. This means that the state
cannot be thought of as a point in R®. The solution turned out
to be to regard the state not as a point in R™, but as a function.
One could then write an equation for the rate of change of this
state (the Schrodinger equation). Build into this new set-up was
some fundamental indeterminacy. Nevertheless, quantum effects
only appeared at the limits of observation: in the very small, or
very short, or very energetic. In the macroscopic world around us,
quantum effects were hidden and the physics of Newton applied.

Another problem has been recognized only in recent years.
Some very simple dynamical systems turn out to exhibit behavior
which is very complicated and extremely sensitive to small changes
in initial position. Long term predictions in systems exhibiting this
behavior are very problematic.

111



Identifying variables — Epidemics

In chapter 3, we have looked at a number of population models
involving different species. We did this because the variables were
easy to identify. In most cases, identifying the appropriate quantities
to characterize a state is much more problematic and one of the first
steps that must be taken in exploring a situation. Construction of
models appropriate to a field should always be undertaken by (or in
consultation with) someone thoroughly conversant with the situation
under study. At its best, the property of building and validating
models is a process in which the relevant variables and concepts
are identified and intuitions about the situation are progressively
sharpened. In this way, model building is a tool in which the process
of building a model leads one to ask questions, make conjectures
and test alternate formulations. Model-building, like writing, is a
process in which one gains more information in being forced to
impose a structure on one’s thoughts.

Let us consider a population model in which it is not imme-
diately clear what the variables should be. Let’s suppose we are
considering a disease with the following characteristcs:

¢ the disease lasts 10 days

e you catch the disease from contact with someone who already
has it

e once you have caught the disease, you can’t catch it again for
another year

Suppose that we start with 200 people who have the disease.
Can we say what will happen in the long run? Will everyone even-
tually get the disease: might the disease die out? How many people
are likely to have the disease at one time?

To answer these questions, we would like to build a dynamical
system. The first thing to do is to decide what a state such be. It
is clear that there should be at least two categories of people: those
who have the disease and those who don’t (and, so, we should have
the numbers, or mass, of each as a quantity needed to specify the
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state). However, if we try to write down the rate of change of each
of these numbers, it is clear that we need something more.

Let us say that I (for Infected) is the number of individuals
with the disease and z the number of individuals who do not have
the disease. Let’s decide to measure time in days. If we try to write
down I' we see that it will be the difference between the number of
people who get sick each day and the number who get better. We can
estimate the number who get better: since the disease lasts ten days,
we would expect that the number of people who get better each day is
about one tenth of the number who have the disease (this assumes, of
course, that everyone who was sick did not get sick on the same day).
However, we will have difficulty figuring out the number of people
who get sick purely from a knowledge of I and . The reason is that
some of the z people who do not have the disease will be immune and
the number of people who come down with the disease will surely be
affected by what proportion of the population is immune. Thus, we
further subdivide the population. As before, we let I be the number
of individuals who are sick; but now we divide the population which
does not have the disease into two groups: those who are immune
(in this case, those who do not have the disease, but who had it less
than one year ago) and those who are susceptible (that is, those who
have never had the disease and those who had it more than one year
ago). We let R (for Recovered)be the number who are immune and
S (for Susceptible) be the number who are susceptible.

Now we try to write out equations for I’, R’ and S’. We have
already indicated that, since the disease lasts ten days, it is reasonable
to suppose that one tenth of those sick get better each day. Can we
say how many get sick? Since the disease is spread by contact, we
might assume that the number of individuals who get sick is pro-
portional to the number of contacts between susceptible individuals
and those who are sick. The number of contacts is in turn, to a first
approximation, proportional to the product I - S. To get some idea
of the magnitude of the constant of proportionality, let’s suppose
that we are modelling the situation in a medium sized town and that
each individual comes in contact with, on average, one thousandth
of the town. (This assumption would be way out of line if we were
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modelling a disease in New York.) Few diseases are so virulent that
you necessarily get it if exposed to someone with the disease. Let’s
suppose that, in our case, it takes on average five contacts with some-
one diseased to contract the disease. If this is the case, we would
expect that the number of individuals who get the disease each day
would be % X ﬁ x IS. Since the number of individuals who get
better is 11, we have

I' =.0002IS — .11.

To get an equation for the rate of change R’ of the number of
individuals who are immune, note that everyone who recovers from
the disease is immune. Since individuals stay immune for one year,
each day we would expect that one three hundred and sixty-fifth of
those who are immune, lose their immunity. On the other hand, all
those who recover each day become immune. Thus,

R' = .1I - .0027R

(since ﬁ = .0027). We can get an estimate for the rate of change of
the number who are susceptible in the same way. This number must
be equal to the number who lose their immunity and, hence, become
susceptible minus the number who stop being susceptible (by virtue
of becoming sick). We have

S’ = .0027R — .000215.
Thus, we wind up with the following dynamical system:

I' = .0002IS — .11
R' = .1I — .0027R (1)
S’ = .0027R — .0002IS.

We emphasize that we made all kinds of assumptions in the process

of getting this system. However, if we accept these assumptions, we
can use the system to explore what will happen as time increases.
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For instance, let’s imagine that we are in a town of 40000 people
and that initially 200 people are sick and no one is immune. What
can we expect over the course of a couple of years? To determine
this, we plot I, R, S as functions of time. Again, we write a simple
program. Let’s suppose we track the progress of the disease over 2
years and that we choose the time step to be intervals of one tenth
of a day. Since there are 730 days in 2 years, we will need to do the
computation 10 - 730 = 7300 times.

DEFDBL A-Z
SCREEN 12
WINDOW (0,0)-(730,40000)
I=200
R=0
5=39800
FOR N=1 TO 7300
PSET (N, I)
PSET (N, R)
PSET (N, S)

Iprime= .0002%I%S - .1x%I
Rprime= .1*I-.0027*R
Sprime= .0027*%R - .0002*I*S
I =1+ .1*%Iprime
R =R + .1*Rprime
S =S + .1*Sprime

NEXT N

PRINT I, R, S

Running the program gives the graphs sketched in Figure 1 and
shows that the populations I, R and S tend to the values of 500,
38462 and 1038, respectively . This means that, at any time in our
town, most of the 40000 people are immune, about five hundred
people will be sick, and a little more than twice that susceptible.
Phrased somewhat differently, the trajectory of (1) beginning at the
point (200, 0, 39800) tends to the equilibrium point (1038, 38462,
500) (which suggests that the latter is an attractor).

Exercise. It is difficult to convincingly sketch three-dimensional
output on the plane, so write (and run) a program to sketch the
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Figure 1. I, R and S as functions of time
determined by equation (1)

projections of the trajectory of (1) beginning at (200, 0, 39800) onto
the I-R, I-S and R-S planes.

Exercise. Can you find the equilibrium point of (1) analytically?
By changing the coefficients in system (1), can you arrange that some
of the variables oscillate?

Exercise. How does the conclusion sketched in the text change if
half of the population is immune.

Another interesting case occurs if the disease confers permanent
immunity (for example, measles or chickenpox as opposed to the
common cold). In this case, there is no contribution of the immunes
to the susceptible population, so the number R of immunes is always

116



increasing and the number S of susceptibles is always decreasing.
We have the system:

I' =.00021S — .11

R = .11
S’ = —.000218S.
The more general system
I' =alS —bI
R =bI
S' = —alS

is a well-known epidemiological model, called the S-I-R model. S-
I-R models have been used to study outbreaks of the plague. In this
case, one has to allow for deaths (so that S + I + R is not constant).
In one study (G. F. Raggett, Modelling the Eyam Plague, Bull. Inst.
Math. and its Appl., 18 (1982) 221-26), a modified S-I-R model is
applied to a plague outbreak in the English village of Eyam in 1665-
66. Raggett shows how to determine the parameters. The agreement
between the actual data and the model is very good. For more on
S-1-R models see Murray’s book and the references therein.

Transferability of Models — Rumors

It sometimes happens that studying a model built for one pur-
pose can yield insight into another area. Sometimes, the whole model
can, with suitable reinterpretation, be used in an entirely different
context. In fact, a useful model can serve as a metaphor for other
situations.

As an example let us consider rumors. Probably all of us have
seen demonstrations of how rumors spread and how they change
as they spread. The party game in which one person begins by
whispering a message to one other person, together with instructions
to pass the message on to another person, who in turn is to pass it
on to yet another, and so on, until the message finally comes back to
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the person who initiated it, shows that there can be a huge difference
between what started out and what the last person wound up hearing.

There is, however, a class of rumors which have been studied
and which remain remarkably similar over time. These are the so-
called urban myths. There are a number of features that characterize
them. They are usually exchanged between friends, often in confi-
dence, with the preliminary remark that what is about to be related
happened to a unspecified friend (or a friend of a friend). The reader
will almost certainly recognize some of them: one concerns the lady
who tried to dry off her wet cat and popped it into the microwave
oven for a half a minute ... (a more gruesome variant is the babysitter
who try to dry a newbormn in the same way); another, an about-to-be-
married couple who decide to slip downstairs in the altogether for a
little fun and frolic, only to walk into a surprise pre-nuptial party.

Such stories spread across the country and it is interesting to ask
how long it takes for most people to have heard them. Here, the most
useful models divide people into those who have not heard the rumor
(the Susceptibles), those who have heard the rumor, believe it and are
actively spreading it (the Infecteds), and those for whom the rumor
has become stale news or who have grown to disbelieve the rumor
(the Recovereds). Depending on the modelling assumptions, one
might or might not imagine the recovereds as becoming susceptible
again. The reader may enjoy constructing a specific example of such
a model as an exercise.

Examples of a similar sort arise in some disease models which
treat germs as predators and susceptible individuals as prey.

Complex systems and structural stability

So far we have concentrated on systems with relatively few
degrees of freedom. The principles are the same for systems with
a large number of variables, although the number of computations
required to get anything useful can be immense. For example, since
an ounce of matter typically contains over 10?3 molecules, if we
wanted to model the behaviour of an ounce of matter by keeping track
of the motion of separate molecules, we would need at least 6 x 10%2
variables (three for the position of each molecule in space and three
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for the velocity in each of the coordinate directions), so that a state
of the system would correspond to a point in R6*10** Even thisis a
simplification, for it assumes that we can treat the molecules as points
in space — in actual fact, the molecules can have a definite orientation
and they can be spinning. Fortunately, we are rarely interested in the
position and velocity of each of the constituent molecules in a given
amount of matter. For most purposes, we are interested in more
macrosopic properties. Thus we can take averages of the variables,
arriving at quantities like the average velocities of the molecules
(which is closely related to the quantity we call temperature) or the
density of the matter.

On the other hand, a gram of matter is comparatively simple.
Real ecosystems are much more complex. We would need one
variable each for the biomass of each different species. In addition,
we might want to divide the species up by age structure and take into
account seasonal variations and climactic considerations. Writing
down the equations for the rates of change would be largely a matter
of guesswork — it is hard to imagine that the coefficients could be
known within even an order of magnitude.

Despite this complexity, there are regularities in ecosystems.
This is somewhat mysterious because, unlike the situation with a
gram of matter, it is not clear what, if anything, averages of the
variables mean. What does it mean to compute the average biomass
of rabbits, foxes and berries?

An even more striking example is the development of a human
embryo. If one tries to model this as a dynamical system, the sheer
number of variables is overwhelming: for a start, one needs the
concentration of thousands of different organic compounds (lipids,
enzymes, hormones, free radicals) in the uterus. Moreover, every
woman is different, so there will be individual differences. Nonethe-
less, the process of embryo development is remarkably similar in all
human beings — there are a number of distinct stages (blastulation,
gastrulation, etc.) which the embryo goes through. The time frame
is remarkably similar for different individuals (quickening occurs at
12 weeks, total gestation period is about 40 weeks). In fact, the
existence of the science of medicine is testimony to the similarities
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between different individuals - if everyone were too different, there
would be no way of identifying the same disorder in different indi-
viduals or of being relatively certain that a drug that worked for one
person would work for another.

In pondering the question of how regularities could appear in
very complicated dynamical systems (such as those governing em-
bryo development or ecosystems), René Thom, a French mathemati-
cian advanced a very ingenious theory of models. He began with the
observation that, given a dynamical system and a state changing in
accordance with that dynamical system, the state rapidly moves to
an attractor. Thus, when observing a real system, one should (unless
there is some compelling reason to do otherwise) assume that the
state corresponding to it was near an attractor of a dynamical sys-
tem. Thom then proposed to think of the dynamical system, itself,
as changing. As the dynamical system changed, the attractor would
change and hence the observed state would change.

The notion that the states that one observes are at or near at-
tractors jibes well with our experience with models of two species
systems. In all instances we saw that the populations settled down
very rapidly either to a fixed equilibrium population (corresponding
to a point attractor) or to a steady cyclical behavior (corresponding to
a limit cycle). In Thom’s view, as environmental conditions change
the parameters in the model would change — perhaps the growth rate
of a certain species would be altered or the carrying capacity. This
change would alter the position of the attractor. In certain instances,
the attractor might change its nature entirely: splitting into two or
more attractors, turning from a point into a limit cycle, or even disap-
pearing altogether. Thom called these sudden changes in the nature
of an attractor catastrophes (whence the name catastrophe theory
to refer to this type of modelling).

Thom, following Poincaré, emphasized that the key role played
by dynamical systems which were structurally stable in modelling
biological and ecological situations. Intuitively a system is struc-
turally stable if small changes in the dynamical system results in
dynamical systems which have trajectories (and, in particular, attrac-
tors) which do not differ too much from those of the original system.
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Mathematically, the difficulty is to define what is meant by “small”
changes and what is meant by “not differing too much”.

But Thom went further. He and his coworkers established that
many catastrophes were stable in the sense that changes between
similar systems gave rise to similar changes in similar attractors
and, hence, to changes in form which were recognizably similar.
He observed that one could talk of stability not just of dynamical
changes, but of changes in dynamical systems. The mathematical
difficulties in defining what structurally stable change of form means
were formidable. Nevertheless, Thom succeeded in many cases.
One celebrated result conjectured by Thom (and proved by Mather)
was that there were only seven different types of structurally stable
changes that could occur between attractors upon varying four or
fewer parameters in the class of dynamical systems known as gradi-
ent systems. These structurally changes were called the elementary
catastrophes and the details of the changes were widely studied.
(As sometimes happens with new results, the theory was oversold
and exaggerated claims were made on its behalf: the popular press
even got into the act.)

Gradient dynamical systems enjoy a number of very special
properties, For example, all of their attractors are point attractors:
they cannot have limit cycles. It was widely recognized at the time
that “most” systems were not gradient systems. Nevertheless it was
hoped that most systems were like gradient systems in that their
attractors were point attractors or, at worst, limit cycles. This hope
offered the possibility that most morphological processes could be
understood in terms of the elementary catastrophes and a handful of
other transitions (such as the much studied change of a point attractor
into an limit cycle, the so-called Hopf bifurcation, and its higher
dimensional analogues).

As well shall see, this hope was too optimistic. However,
catastrophe theory and the underlying mathematics (now known as
singularity theory) underwent intensive development and advanced
our understanding of a great number of phenomena, notably in op-
tics. The viewpoint of catastrophe theory, namely that of trying to
model a situation as an an attractor of a dynamical system, and then
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allowing the system to vary in prescribed ways, is exceedingly useful
in a wide variety of contexts. More controversial was Thom’s use of
his models of change (the elementary catastrophes) as investigative
tools in areas where it was not clear that the underlying dynamical
systems were gradient dynamical systems. The debate on this issue
has been fascinating and we encourage the reader to browse through
Thom’s book and the reviews of it in the lead journals of the mathe-
matical, biological and physical professional societies. A similar sort
of debate is currently occurring regarding “chaotic” systems. The
underlying conflict seems to revolve around the question of whether
one should use purely mathematical constructs as metaphors and
speculative devices.

Weather — Chaotic Dynamical Systems

The success of Newton’s theory of gravitation and the vision
it afforded of a universe in which all objects moved, in possibly
complicated ways, in accordance with a set of simple rules betokened
the possibility that everything might, at root, be reducible to a set
of simple physical laws. In this view, there are a few underlying
dynamical systems, knowledge of which, together with knowledge
of the values of the variables, would allow one to predict what might
happen arbitrarily far into the future. (Remember that knowledge of
a dynamical system, allows one to say what will happen to any state
over time.) “Such an intelligence”, wrote Laplace, speaking of the
Prime Mover, “would embrace in the same formula the movements
of the greatest bodies of the universe and those of the lightest atom,;
for it, nothing would be uncertain and the future, as the past, would
be present to its eyes.” And, indeed, many of the advances in physics
seemed to bear this out.

One situation that a great deal of effort has gone into has been
weather prediction. The earth’s atmosphere is a fluid and the equa-
tions that describe a fluid, the Navier-Stokes equations, are well-
known, albeit far from being thoroughly understood.

Since a fluid is a continuous medium, it is not appropriately
modelled as a point in R™, but rather as a collection of functions
(of latitude, longitude, height above the earth, and time). The set of
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all such collections of functions forms a mathematical space which
has an infinite number of dimensions. The equations which describe
the rate of change of such objects are not equations of a type we
have encountered so far, (they are partial differential equations).
Nevertheless, by looking at the atmosphere at a large, but finite
number of places on the earth, we can take an approximation of the
state space to be R for some large but finite N. The Navier-Stokes
equations then define a dynamical system on this space. Given a
set of observed values at the chosen observation points, we can then
use the dynamical system to project what the values will be at future
times, at least in theory.

This is the technique used by the National Metereologlcal Cen-
ter in the United States and a number of weather forecasting centers
in other countries. The best forecasts come out of the European Cen-
ter for Medium Range Weather Forecasts in Reading, England. This
center is funded by the Common Market countries, who decided to
pool their resources to provide accurate weather prediction in West-
ern Europe. It is staffed by a rotating crew of young scientists,
mathematicians, computer programmers and technicians from the
Western European countries and boasts some of the best computer
facilities in the world.

The European Center divides the earth’s atmosphere into 100
kilometer by 100 kilometer by 1 kilometer boxes and takes temper-
ature, pressure, humidity, and a couple of other readings in each
(actually, in some boxes more readings are taken). Each such read-
ing in each such box represents the value of a separate variable. It
takes over one hundred thousand such boxes to represent the atmo-
sphere. Since there are at least five readings taken in each box, the
atmosphere is represented by a point in RN where N > 500000.
Since each variable requires an equation giving its rate of change,
the model requires more than a half a million equations.

The dynamical system is run on a Cray Supercomputer which
can accept observations fed in at the rate of 100 million observations
per second. The Cray does 400 million calculations per second. At
this rate, it takes it three hours to generate a ten day forecast. (To get
an idea of how fast this is, note that in following the course of the
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cold epidemic two years into the future, we had to do about 140000
calculations since each pass through the loop requires 18 calculations
and we had to pass through the loop 7700 times. The Cray computer
would complete the calculation in one three thousandth of a second.)

Incidentally, the “Cray" in Cray computer refers to Seymour
Cray, a reclusive genius who founded the company that makes the
computer. Another Cray computer is owned by Lucas Films, which
uses it to help create the special effects seen in such films as Star
Wars.

Mathematical modelling performed on high speed computers
has changed weather forecasting into a science. The European Cen-
ter estimates that several billion dollars are saved a year as a result
of its forecasts. Nevertheless, anyone who has watched the weather
forecasts on television will realize that the forecasts are often wrong.
The long-range forecasts extending beyond a day or two are partic-
ularly subject to error. Until very recently, there was great optimism
that better computers and better means of gathering data (more satel-
lite coverage and remote control measurement of far off regions)
would yield very accurate predictions.

After all, no one seriously questions the validity of the Navier-
Stokes equations. They are grounded in Newtonian physics which
has been thoroughly tested and are known to accurately describe the
behavior of fluids. So it would just seem a matter of making sure
that we had enough data and computers fast enough to process them.
It is not unreasonable to suppose that given sufficient investment,
we could arrange to record readings every cubic kilometer. The
increases in computer speed seem likely to continue through the
next decade as new technologies are brought on line.

Indeed, the inventor of the digital computer, John von Neumann,
confidently predicted that within a century we would not only have
the capacity to predict the weather months in advance, but also to
alter it at will. This dream was seriously called into question by a
discovery Edward Lorenz made in 1962. Lorenz was a metereologist
at MIT with a strong mathematical bent. He had constructed a model
weather system which mimicked that of the earth, but on a much |
smaller scale. Lorenz’s system had only twelve equations, which
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were a rough approximation of the Navier-Stokes equations.

Lorenz ran the equations on a computer in his office, looking
for regularities and patterns in his model weather system. At that
time, computers were much more primitive than they were today —
a mass of tubes and circuit boards and wires. Lorenz’s computer,
a Royal McBee, made 60 calculations per second and was always
breaking down. One day in the winter of 1961, Lorenz wanted to
re-examine part of a run he had made earlier. Rather than repeat
the whole run, he typed back in values that the computer had given
as output about midway through the run and left to get a coffee.
Upon returning about an hour later, he noticed that the new output
had begun to diverge significantly from the output he had obtained
earlier. On comparing the two graphs of the output, he noticed that
they were very similar at first, but after a while started to bear no
resemblance to one another.

Since a dynamical system is completely deterministic, this
seemed impossible. In an autonomous dynamical system, if you
feed in a set of values on one day and a day later you feed in the
same set of values, you will get the same output. The initial con-
ditions determine the behavior of the system for all time. Lorenz
carefully re-examined what he had done. It turned out that he had
not fed in exactly the same values. His computer gave output to six
decimal places: to shortcut typing time, Lorenz had fed back only
the first three decimal places, figuring that a difference of less than
one thousandth in the initial values was not going to make too much
difference. This difference of less than one thousandth was enough
to totally change the behavior!

This is in sharp contrast to the two-species models we looked
at earlier. If one changes the values of the initial numbers of each
species by one thousandth, one winds up with exactly the same
values in the long run. The system damps out slight fluctuations in
the inputs. Lorenz’s system seemed to do the opposite — as time went
on it magnified the differences in inputs.

Lorenz realized the staggering consequences of his discovery.
There was no contradiction with absolute determinism. If you fed in
exactlythe same values, you would get exactly the same output. But,
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in the real world, it is impossible to measure the values of physical
quantities such as temperature and humidity exactly. Moreover, by
measuring them at 100 kilometer intervals, one was ignoring changes
in the values that could occur in the 100 kilometer intervals between
the places one took the measurements.

Over the next year, Lorenz tracked down where this behavior
was coming from. In the end, he boiled his system of twelve equa-
tions down to three equations which represented a highly idealized
description of motion of a fluid in a horizontal layer which was being
heated from below. The fluid on the bottom heats up and rises. As
it rises it cools and tends to fall to the bottom, re-approaching the
source of the heat, where it heats up again and begins to rise. This
motion is called convective motion (or convection). For low values
of the heat this sets up a circular motion in the fluid. As the heat is
turned higher, wobbles appear in the circular motion. As the heat
is turned still higher, the whole pattern breaks down and becomes
turbulent. This is because the motion speeds up and some of the cold
fluid that has come from the top begins to circulate back up, pushed
along by the current before it has warmed up. Instead of making
it all the way up and around, it may fall back toward the bottom,
reversing the direction of the cycle. Soon, any recognizable pattern
breaks down. Lorenz’s equations were the following:

:1:'1 = —10z; + 10z,
:13’2 = 28$1 — Ty — T1X3 (2)
:1:3 = —§:r3 + T129.

Here, 1 measures the intensity of the convective motion and z,
the difference in temperature between the ascending and descending
currents. When z; and x, have the same sign, it means that warm
fluid is rising and cold fluid is descending. The variable z3 measures
the amount by which the change in temperature fails to fall linearly
with height. A positive value, means that the temperature falls
much more rapidly near the boundary than higher up. The crucial
coefficient is the the number 28 multiplying the variable x; in the

126



second equation. If this number were less than 4 ~ 24.74, then
the equations would have point attractors corresponding to steady

convection. Above this value, all hell breaks loose.

Lorenz shows that any solution starting within some ball of finite
radius about the origin remains bounded (and therefore must tend to
some attractor). The point (0,0,0) is a rest point (corresponding
to no convection), but it is not an attractor — trajectories tend away
from it. The points (6+/2,6v/2, 27) and (—6+/2, —6+/2, 27) are also
rest points (they correspond to the states of steady convection, but
they are also unstable. Upon starting at a point (0,0,0), the solution
will loop to the right a few times, then to the left a few (but possibly
different number of times), then to the right and so on back and
forth from left to right in an irregular manner. In Figure 2 we have
sketched a solution for 50 loops. We have also sketched the plane
z = 27 — it contains equilibrium points which correspond to states
of steady convection, but which are not attractors. The parts of the
trajectory below this plane are sketched as dotted lines. If we were
to start at a different initial point, we would get a similar looking
picture, but the number of loopings to the right and the left, and the
sequence in which they occur, would be totally different (and equally
as unpredicatble).

The figure that is sketched represents an attractor that is neither
a point nor a closed curve. Rather it is an infinitely long line which
is confined to a region in space. It seems to lie on a surface: closer
examination reveals this to be the case, but the surface is like a set
of very thin strips which interleave in a very complicated fashion.
For more details, we refer the reader to Lorenz’s original (and very
readable) paper “Deterministic Nonperiodic Flow” in the Journal
of Atmospheric Sciences, 20 (1963), pages130-41.

Attractors which lie in a bounded region of space and which
are neither points nor closed curves have been dubbed strange at-
tractors. Such attractors exhibit the phenomenon called sensitive
dependence on initial conditions, which means that states initially
close together evolve in radically different ways over longer and
longer time intervals. The sensitive dependence on initial condi-
tions means that, even though the system is deterministic, long term
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Figure 3. The Lorenz attractor.
Oscar Lanford made this picture of a trajectory
of system (2) beginning near (0,0,0)

prediction is, in practice, impossible. More colloquially, this phe-
nomenon has come to be known as the butterfly effect, referring to
the possibility that the draft caused by the movement of the wings
of a butterfly in Tokyo could translate one month later into a snow
storm in New York City. The image seems to have been inspired by
the resemblance of Lorenz’s attractor to a butterfly.

The reader is encouraged to write and run a computer program
to verify that the behavior sketched above does indeed occur — there
is nothing like verifying such things for yourself. A step size of .005
works fine.

Because Lorenz’s paper first came out in a metereological jour-
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nal, it wasn’t until the mid 1970’s that it came to the attention of
mathematicians. In the meantime, mathematicians had come to re-
alize that attractors of structurally stable systems could be more
complicated than they had first thought and they had examples of
dynamical systems which seemed to provide instances of this. How-
ever, the mathematicians’ examples struck other scientists as rather
contrived. Lorenz’s example was immediately accepted as natural.

At the turn of the century, Henri Poincaré, had discovered that
there were some extremely complicated solutions to Newton’s equa-
tions describing the motions of just three bodies moving in accor-
dance with the law of gravity. He had observed that slight changes
in the initial conditions resulted in huge changes in the subsequent
motion and despaired of ever fully understanding them. In Science
and Method, he wrote

A very small cause which escapes our notice determines
a considerable effect which we cannot fail to see, and
then we say that the effect is due to chance. If we
knew exactly the laws of nature, and the situation of
the universe at the initial moment, we could predict
exactly the situation of that same universe at a suc-
ceeding moment. But even if it were the case that the
natural laws had no longer any secret for us, we could
still know the situation approximately. If that enabled
us to predict the succeeding situation with the same
approximation, that is all we require, and we should
say that the phenomenon had been predicted, that it
is governed by the laws. But it is not always so; it
may happen that small differences in the initial condi-
tions produce very great ones in the final phenomena.
A small error in the former will produce an enormous
error in the latter. Prediction becomes impossible ... .

However, the equations Poincaré had examined were not stru-
cuturally stable (because the nature of the solutions changes if one
adds a friction term to the system). It was widely felt that if you
added friction, so as to get something structurally stable, the friction
would damp out the large disturbances (and the whole system would
tend toward an equilibrium point).

When Lorenz’s paper was “discovered” it caused an enormous
stir. Here was a set of simple equations which actually arose in
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physics, which was structurally stable, and which embodied what
Poincaré had feared. Before Lorenz’s paper, almost no one would
have guessed that such a simple system could exhibit such behavior.
Indeed Lorenz’s equations are, at first sight, no more difficult looking
than the equations we wrote down describing the spread of a common
cold.

Since then even simpler equations have been observed to ex-
hibit sensitive dependence on initial conditions. Such behavior is
termed “chaotic” and the corresponding dynamical systems chaotic
dynamical systems. At present, there is an enormous amount of
work being devoted to investigating such systems.

The Last Word

The discoveries detailed in the last section have resulted in a
very different approach to many problems. Before 1970, variations
from regularity and periodic behavior were seen as the result of exter-
nal influences. The slight, but unpredictable variations in ecological
cycles had been seen as the result of “random” environmental influ-
ences. Nowadays, it is much more common to look for the cause
of these seemingly random variations within the dynamical system
itself. Radical swings in the stock market are much less likely to
be considered as the result of a catastrophe changing the dynamical
system, than as a reflection of the possible existence of a strange
attractor in the underlying dynamical system.

Scientists are much more cautious about the validity of long
term predictions based on dynamical systems. At the European Cen-
ter for Medium Range Weather Forecasts, all long range weather
forecasts are run several times with slightly different initial condi-
tions. If the forecasts agree, then greater confidence is placed on the
forecast. If they disagree, then it is assumed that the initial state is
in an area where it is being attracted by a strange attractor, and the
forecast is taken to be unreliable.

This concludes our story. Dynamical systems, coupled with
high speed computing, will continue, at least for the foreseeable fu-
ture, to be one of the principal tools for modelling and understanding
reality. It is well to remember that: 1) they are not the sole way of
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modelling our world and 2) even if one knows the equations of a
dynamical system, one’s problems may be just beginning. Nonethe-
less, dynamical systems can be a powerful speculative tool. They are
the chiel tool for prediction in surprisingly many sciences and social
sciences. Moreover, the effort to model a situation as a dynamical
system, much as the effort to phrase a thought in written English, is
likely to be instructive.
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