
1. Let f(x, y) = 5 + 3x2 + 3y2 + 2y3 + x3.

(a) Final all critical points of f .

(b) Use the second derivatives test to classify the critical points you found in (a) as a
local maximum, local minimum, saddle point, or N/A if the test is not does not
yield any information.

(c) Determine whether or not f(x, y) has a global maximum in the xy-plane. Justify
your answer.

Solution:

(a) The partial derivatives of f are

fx(x, y) = 6x+ 3x2 = 3x(2 + x)

fy(x, y) = 6y + 6y2 = 6y(1 + y)

Setting each equation equal to zero yields four points at which both partials are
zero. Hence f has four critical points: (0, 0), (0,−1), (−2, 0), (−2,−1).

(b) First note that f is a polynomial in two variables, so that it has continuous second
partial derivatives and the second derivatives test applies. The second partials of
f are

fxx(x, y) = 6 + 6x

fxy(x, y) = 0

fyy(x, y) = 6 + 12y

In general, the quantity that we’re interested in is

D(x, y) = fxx(x, y)fyy(x, y)− [fxy(x, y)]2 = (6 + 6x)(6 + 12y)

= 36(1 + x)(1 + 2y)

At each of the critical points, we see

D(0, 0) = 36 and fxx(0, 0) = 6 so (0, 0) is a local minimum

D(0,−1) = −36 so (0,−1) is a saddle point

D(−2, 0) = −36 so (−2, 0) is a saddle point

D(−2,−1) = 36 and fxx(−2,−1) = −6 so (0, 0) is a local maximum

(c) Consider the values of f along the x-axis, i.e. f(x, 0) = 5 + 3x2 + x3. By making
x very big, the value of f can be made arbitrarily large, so f cannot have a
maximum in the xy-plane.
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2. Suppose that as you move away from the point (2, 0, 1), the function f(x, y, z) increases
most rapidly in the direction of the vector 3̂i− ĵ + 5k̂ and the rate of increase of f in
this direction is 7. What is ∇f(2, 0, 1)?

Solution: The direction of the gradient vector at any point is the direction of greatest
increase of the function at that point, and its length is the the rate of that increase.
Hence we can conclude that

u =
〈3,−1, 5〉
|〈3,−1, 5〉|

=
1√
35
〈3,−1, 5〉

is a unit vector that points in the same direction as ∇f(2, 0, 1). Moreover 7 =
|∇f(2, 0, 1)|, so

∇f(2, 0, 1) = 7u =
7√
35
〈3,−1, 5〉
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3. Consider the function f(x, y) = x3 + y3 − 9xy + 1

(a) Find and classify the critical points on f(x, y).

(b) Find the absolute maximum and minimum values of f(x, y) in the triangle with
vertices (0, 4), (4, 0), and (4, 4).

Solution:

(a) The partial derivatives of f are

fx(x, y) = 3x2 − 9y

fy(x, y) = 3y2 − 9x

Setting the first partial equal to zero we have that y = x3/3, and substituting
this in the second equation, x4/3 − 9x = x(x3/3 − 9) = 0. The solutions to this
equation are when x = 0 or x = 3. Hence the only critical points are (0, 0) and
(3, 3). The second partial derivatives of f are

fxx(x, y) = 6x

fxy(x, y) = −9

fyy(x, y) = 6y

The quantity that we need to apply the second derivatives test is

D(x, y) = (6x)(6y)− (−9)2 = 36xy − 81

and so

D(0, 0) = −81 so (0, 0) is a saddle point

D(3, 3) = 36 · 9− 81 > 0 and fxx(3, 3) = 18 > 0 so (0, 0) is a local minimum

(b) We have already found the critical points in part (a), and only (3, 3) lies in the
triangle. The value of f there is f(3, 3) = 2 · 27− 81 + 1 = −28. So it remains to
find the extreme points of f on the boundary:

Case 1: Along the hypotenuse, y = 4− x,

f(x, 4− x) = x3 + (4− x)3 − 9x(4− x) + 1 = x3 + (4− x)3 + 36x+ 9x2 + 1

Setting the derivative of this function (with respect to x) to zero

0 = 3x2 − 3(4− x)2 + 36 + 18x = 3x2 − 3(4− 2x+ x2) + 36 + 18x

= 24 + 24x
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shows that the only critical point is when x = −1. We are only interested in
points where 0 ≤ x ≤ 4, so we only need to check the endpoints:

f(0, 4) = 43 + 1 = 65

f(4, 0) = 65

Case 2: Along the vertical edge of the triangle, we have

f(4, y) = 64 + y3 − 36y + 1

Taking the derivative with respect to y and setting this equal to zero

0 = 3y2 − 36

shows that the only critical point in the range 0 ≤ y ≤ 4 occurs when y = 2
√

3.
The value of f at this point and the corner that was not computed above is

f(4, 2
√

3) = 64 + (2
√

3)3 − 36(2
√

3) + 1 = 65 + 8 · 3
√

3− 72
√

3 = 65− 48
√

3

f(4, 4) = 2 · 64− 36 · 4 + 1 = −15

Case 3: Along the horizontal edge of the triangle, we have

f(x, 4) = x3 + 64− 36x+ 1

Note that this is the same function of one variable as the one considered in case
2, so we know that the only critical point will be when x = 2

√
3. So the values of

f there and at the last corner are

f(2
√

3, 4) = 65− 48
√

3

f(0, 4) = 65

Finally, to find the absolute maximum and minimum on the triangle, we take the
maximum and minimum of the values found in the three cases and at the critical
point (3, 3). Thus

absolute max on triangle is 65

absolute min on triangle is − 28

4



4. (a) Find a set of parametric equations for the line passing through the point (2, 1,−1)
and normal to the tangent plane of

4x+ y2 + z3 = 8

Solution: This surface is a level surface of the function

F (x, y, z) = 4x+ y2 + z3

Since the gradient F is normal to its level surfaces, we can use ∇F (2, 1,−1) as
the direction of the line.

∇F (x, y, z) = 〈4, 2y, 3z2〉
∇F (2, 1,−1) = 〈4, 2, 3〉

Thus

x = 2 + 4t

y = 1 + 2t

z = −1 + 3t

(b) Suppose that z = f(x, y), where x = et and y = t2 + 3t+ 2. Given that ∂z/∂x =
2xy2 − y and ∂z/∂y = 2x2y − x, find dz/dt when t = 0.

Solution: The chain rule says that

dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt
= (2xy2 − y)(et) + (2x2y − x)(2t+ 3)

When t = 0, x = 1 and y = 2, so plugging in these values

dz

dt
= (8− 2)(1) + (4− 1)(3) = 15

(c) Let f(x, y) = (x− y)3 + 2xy+ x2− y. Find the linear approximation L(x, y) near
the point (1, 2).

Solution: The partial derivatives are

fx(x, y) = 3(x− y)2 + 2y + 2x

fy(x, y) = −3(x− y)2 + 2x− 1

and evaluated at (1, 2)

fx(1, 2) = 9

fy(1, 2) = −2

Thus

L(x, y) = f(1, 2) + fx(1, 2)(x− 1) + fy(1, 2)(y − 2) = 2 + 9(x− 1)− 2(y − 2)
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5. Find the equation of the tangent plane to the surface z = 4x3y2 + 2y at the point
(1,−2, 12).

Solution: Let f(x, y) = 4x3y2 + 2y. The partial derivatives are

fx(x, y) = 12x2y2 fx(1,−2) = 48

fy(x, y) = 8x3y + 2 fy(1,−2) = −14

Hence the tangent plane equation is

z = f(1,−2) + fx(1,−2)(x− 1) + fy(1,−2)(y + 2) = 12 + 48(x− 1)− 14(y + 2)

One could also realize the surface as a level surface of the function F (x, y, z) = f(x, y)−
z = 4x3y2 +2y−z. Then a normal vector to the tangent plane is given by the gradient
of F :

∇F (1,−2, 12) = 〈fx(1,−2), fy(1,−2),−1〉 = 〈48,−14,−1〉

and the equation of the tangent plane is given by

0 = ∇F (1,−2, 12) · 〈x− 1, y + 2, z − 12〉 = 48(x− 1)− 14(y + 2)− (z − 12)
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6. Find all points at which the surface

x2 + y2 + 2x = z2

has a vertical tangent plane.

Solution 1: Figure out what the surface looks like. First, we can complete the square
to rewrite the equation as

(x+ 1)2 + y2 = z2 + 1.

We get the intersection of the surface with the xz-plane by setting y = 0; this inter-
section is

(x+ 1)2 = z2 + 1,

a hyperbola with asymptotes z = ±(x+ 1).

Horizontal cross-sections, which we get by setting z = k, are circles

(x+ 1)2 + y2 = k2 + 1,

in the plane z = k with center (x, y) = (−1, 0) and radius
√
k2 + 1. If you sketch the

surface, you will see that vertical tangent planes occur at points where the horizontal
cross-section has the smallest possible radius. This occurs where

z = 0 (x+ 1)2 + y2 = 1.

Solution 2: The tangent plane is vertical when its normal vector is horizontal; that
is, when the z-component of the normal vector is 0.

We can rewrite the equation of the surface as

x2 + y2 + 2x− z2 = 0,

and view it as a level surface of the function

f(x, y, z) = x2 + y2 + 2x− z2.

The normal vector to the surface (and, therefore, to the tangent plane) is the gradient
of f ,

∇f = 〈2x+ 2, 2y,−2z〉 ,

which has z-component equal to 0 when z = 0.

The points on the surface where z = 0 satisfy

x2 + y2 + 2x = 0 (x+ 1)2 + y2 = 1.

Both Solutions: These points form a circle in the plane z = 0 with radius 1 and
center (x, y) = (−1, 0).
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7. Suppose that f(x, y) is the distance between the origin (0, 0) and the point (x, y). Use
what you know about the significance of the gradient to find

∇f(3, 4)

without finding a formula for f or computing any derivatives.

Solution: The direction of ∇f is the direction in which f is increasing most rapidly.
Distance from the origin increases most rapidly if you are moving directly away from
the origin. At the point (3, 4), the vector 〈3, 4〉 points directly away from the origin.

The unit vector in this direction is

〈
3

5
,

4

5

〉
.

The magnitude of ∇f is the directional derivative, or rate of change of f , in this
direction. If you are moving directly away from the origin, your distance from the
origin is increasing at a rate of one unit for each unit of distance you move. Therefore,
|∇f(3, 4)| = 1.

Now we have the direction and magnitude, so we can say

∇f(3, 4) =

〈
3

5
,

4

5

〉
.
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8. Find a function parametrizing the curve γ given by the intersection of the plane with
equation z = x− y and the cylinder with equation x2 + y2 = 1.

Find an equation for the line tangent to γ at the point where (x, y) = (0, 1).

Represent the arclength of γ as an integral. You do NOT have to evaluate this integral;
just write it down.

Solution: Since our curve lies on the cylinder x2 = y2, we can write x = cos t and
y = sin t for 0 ≤ t ≤ 2π. Then the equation of the plane gives z in terms of x and y,
so z = cos t− sin t. Our parametrization is

〈x, y, z〉 = ~r(t) = 〈cos t, sin t, cos t− sin t〉 0 ≤ t ≤ 2π.

At the point where (x, y) = (0, 1) we have t =
π

2
, so the point on γ is ~r

(
π
2

)
= 〈0, 1,−1〉

and a vector tangent to γ is given by ~r′
(π

2

)
.

~r′(t) = 〈− sin t, cos t, − sin t− cos t〉 ;

~r′
(π

2

)
= 〈−1, 0,−1〉 .

The tangent line passes through the point ~r(t) in the direction of ~r′(t), so at t =
π

2
, it

has equation
〈x, y, z〉 = 〈0, 1,−1〉+ t 〈−1, 0,−1〉 .

The arclength of γ is given by∫ 2π

0

|~r′(t)| dt =

∫ 2π

0

|〈− sin t, cos t, − sin t− cos t〉| dt =

∫ 2π

0

√
sin2 t+ cos2 t+ (− sin t− cos t)2 dt =∫ 2π

0

√
sin2 t+ cos2 t+ (sin2 t+ 2 sin t cos t+ cos2 t) dt =∫ 2π

0

√
2 sin t cos t+ 2 dt
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