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2.5. THE COMPARISON TEST

We began our systematic study of series with geometric series, proving the

• Geometric Series Test: arn converges if and only if r 1.

Then in the last section we compared series to integrals in order to determine if they con-
verge or diverge, and established the

• p-Series Test: 1 np converges if and only if p 1.

In this section we study another type of comparison where we compare series to other
series to determine convergence. The general principle is this:

• if a positive series is bigger than a positive divergent series, then it diverges, and

• if a positive series is smaller than a positive convergent series, then it converges.

For example, in the last section (Example 1) we showed that 1 n2 converges using the
Integral Test. Then we used the Integral Test again (Example 2) to show that 1 n2 1

converges. But, 1 n2 1 is smaller than 1 n2 for all n 1, so the convergence of 1 n2 1

is guaranteed by the convergence of 1 n2. While this approach should seem intuitively
clear and simple, we caution the reader that it takes a lot of practice to become comfortable
with comparisons. We state the formal test below.

The Comparison Test. Suppose that 0 an bn for sufficiently
large n.

• If an diverges, then bn also diverges.

• If bn converges, then an also converges.

Before presenting the proof of the Comparison Test, note the phrase “sufficiently large
n”. By “0 an bn for sufficiently large n”, we mean that there is some number N such
that 0 an bn for all n N . This is just a formal way to say that we only care about
tails, and should remind the reader of the Tail Observation from Section 2.2.

Proof. Suppose that for all n, 0 an bn. This seems slightly weaker than the result we have
claimed, but the full result will then follow either by the Tail Observation of Section 2.2 or by an
easy adaptation of this proof.

Let sn denote the nth partial number of an and tn denote the nth partial sum of bn , so

sn a1 a2 an,

tn b1 b2 bn.
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From our hypotheses (that 0 an bn for all n), we know that sn tn for all n.
First suppose that an diverges. Because the terms an are nonnegative, the only way that an

can diverge is if sn as n (why?). Therefore the larger partial sums tn must also tend to
as n , so the series bn diverges as well.

Now suppose that bn converges, which implies by our definitions that tn bn as n .
The sequence sn is nonnegative and monotonically increasing because an 0 for all n, and

0 sn tn bn

so the sequence sn has a limit by the Monotone Convergence Theorem. This shows (again, by the

definition of series summation) that the series an converges.

The Comparison Test leaves open the question of what to compare series with. In
practice, however, this choice is usually obvious, and we will almost always compare with
a geometric series or a p-series. Our next four examples demonstrate the general technique.

Example 1. Does the series
n 2

1

lnn
converge or di-

2

4

6

1 2 3 4 5 6 7 8 9 10

an

sn

verge?

Solution. First note that we probably shouldn’t try to
apply the Integral Test in this example — the function
1 ln x has an antiderivative, but it has been proved
that its antiderivative cannot be expressed in terms of elementary functions.

However, the Comparison Test is easy to apply in this case. Note that

ln n n for n 2, so
1 ln n 1 n for n 2.

Since
n 1

1

n
is a divergent p-series,

n 2

1

ln n
diverges by comparison.

Example 2. Does the series
n 1

ln n

n
converge or diverge?

Solution. This example can be done with the Integral Test, but it’s easier to use the
Comparison Test. We know that ln n 1 for n 3, so

ln n n 1 n for n 3.

Since
n 1

1

n
diverges,

n 1

ln n

n
must also diverge.
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Example 3. Does the series
n 1

cos n

n

2

converge or diverge?

Solution. We can write this series as cos2 n n2. The numerator of this fraction, cos2 n , is
nonnegative for all n (this is important since we can’t apply the Comparison Test to series
with negative terms) and bounded by 1, so

cos2 n

n2

1

n2
for n 1.

Therefore since 1 n2 converges (it is a convergent p-series), the smaller series
n 1

cos n

n

2

must converge as well.

Example 4. Does the series
n 1

1

nlnn
converge or diverge?

Solution. For n e2 7.39, ln n 2, so for these values of n,

1 nlnn 1 n2.

Since 1 n2 is a convergent p-series,
n 1

1

nlnn
converges by comparison.

Sometimes the inequalities we need to apply the Comparison Test seem to go the wrong
way. Consider for example the series

n 1

1

2n 1

We would like to compare this series with the divergent series

n 1

1

2n
,

but the terms in our series seem to be smaller than the terms of 1 2n. Therefore we cannot
naively apply the Comparison Test in this case.

Example 5. Show that the series
n 1

1

2n 1
diverges.
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Solution. We have that

n 1

1

2n 1

1

3

1

5

1

7

1

4

1

6

1

8
n 2

1

2n

1

2
n 2

1

n
,

so the series diverges by comparison to 1 n.

Our next example displays a similar phenomenon. Note that 1 n2 1 1 n2, but we are
still able to compare the series.

Example 6. Show that the series
n 2

1

n2 1
converges.

Solution. Because n2 1 n 1 2, we have that

n 2

1

n2 1

1

3

1

8

1

15

1

1

1

4

1

9
n 1

1

n2
,

so the series converges by comparison to 1 n2.

Example 7. Show that the series
n 1

n

n4 7
diverges.

Solution. We should expect this series to diverge, because the numerator is n and the
denominator behaves like n2, but the inequality goes the wrong way. By giving up a bit in
the denominator, however, we get the desired conclusion:

n

n4 7

n

n4 7n4

1

8n
,

so the series we are interested in diverges by comparison to the harmonic series.

In Examples 5–7, we are really reindexing the series. This procedure is demonstrated
more formally in the example below and in Exercises 25–28. Another method for dealing
with such problems, known as the Limit Comparison Test, is discussed in Exercises 42–50.

Example 8. Show that the series
n 2

n2 3

n4 2
converges by reindexing the series with the

substitution m n 1.
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Solution. We want to compare this series to the series given by its leading terms, n2 n4

(or some multiple of this), but the comparison seems to go the wrong way. By setting
m n 1, which is equivalent to n m 1, we have

n 2

n2 3

n4 2
m 1

m 1 2 3

m 1 4 2
m 1

m2 2m 4

m4 4m2 6m2 4m 1
.

(Note here the change in the lower bound, as in the previous example.) The inequality in
the numerators (we want to compare m2 2m 4 with m2) still goes the wrong way, but
we can take care of this by using a slightly different inequality:

m2 2m 4 m2 2m2 4m2 7m2

for m 1. The inequality in the denominators does go the right way:

m4 4m2 6m2 4m 1 m4.

Since we have made the numerators larger and the denominators smaller, we have made
the fractions larger, and thus

m 1

m2 2m 4

m4 4m2 6m2 4m 1
m 1

7m2

m4
m 1

7

m2
,

which implies by the Comparison Test that the series in question converges, because 7 m2

7 1 m2 is a convergent p-series.

Our next example doesn’t require reindexing, but does require a clever bound for ln n.
So far we have used the facts that ln n n for n 2 (in Example 1) and ln n 1 for n 3

(in Example 2). In fact, a much stronger upper bound holds. Let p be any positive real
number. Then by l’Hôpital’s Rule, we have

lim
x

ln x

xp
lim

x

1 x

pxp 1
lim

x

1

pxp
0.

Recalling a fact from Section 2.1, this means that

lim
n

ln n

np
0

for every p 0. This in turn means that for every p 0, ln n np for sufficiently large n, a
handy fact to have around for comparisons, as we demonstrate next.

Example 9. Does the series
n 1

n ln n

n 3 5
converge or diverge?
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Solution. As we showed above, ln n n1 4 for sufficiently large n (we could give a
smaller bound, but 1 4 is good enough here) and n 3 5 n5, we can use the comparison

n lnn

n 3 5

n1 1 4

n5 2

1

n5 4
.

Because 1 n5 4 is a convergent p-series,
n 1

n lnn

n 3 5
converges by the Comparison

Test.

Our last example is considerably trickier than the previous examples. The reader
should pay attention to the two themes it demonstrates: first, when dealing with a vari-
able in an exponent, it is a good idea to use e and natural log, and second, no matter how
slowly a function (such as ln ln n) goes to infinity, it must eventually grow larger than 2!

Example 10. Does the series
n 2

1

ln n lnn
converge or diverge?

Solution. As the terms have a variable in the exponent, we first manipulate the using e

and ln:
ln n ln n eln ln nlnn

elnn ln lnn nln ln n.

We now need to test
n 2

1

nln ln n
for convergence. The approach from here on is similar to

Example 4: for n ee2

1618.18 (i.e., for large n), we have ln ln n 2, so

1

nln lnn

1

n2
,

and thus
n 2

1

ln nlnn
converges by comparison to the convergent p-series 1 n2.

If a series converges by the Comparison Test, then we have the following remainder
estimate, which we conclude the section with.

The Comparison Test Remainder Estimate. Let an and bn be
series with positive terms such that an bn for n N . Then for
n N , the error in the nth partial sum of an, sn, is bounded by
bn 1 bn 2 :

sn

n 1

an bn 1 bn 2 .
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Proof. By definition,

sn

n 1

an an 1 an 2 .

Now because the terms of an are positive, this is an 1 an 2 , and since we have assumed
that n N ,

an 1 an 2 bn 1 bn 2 ,

proving the estimate.

Example 11. How many terms are needed to approximate
n 1

1

2n n
to within 1 10?

Solution. We use the comparison

1

2n n

1

2

n

for all n 1 to bound the error in approximating
1

2n n
. The first partial sum may not

be a good enough approximation:

s1

n 1

1

2n n

1

2

2
1

2

3 1
2

2

1 1
2

1

2
.

The second and third partial sums are also not guaranteed to be as close to the true sum as
required:

s2

n 1

1

2n n

1

2

3
1

2

4 1
2

3

1 1
2

1

4
,

s3

n 1

1

2n n

1

2

4
1

2

5 1
2

4

1 1
2

1

8
,

but the fourth partial sum is within 1 10:

s4

n 1

1

2n n

1

2

5
1

2

6 1
2

5

1 1
2

1

16
.

Therefore the answer is that 4 terms will certainly approximate the series within 1 10.
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EXERCISES FOR SECTION 2.5

In Exercises 1–4, assume that an and bn are
both series with positive terms.

1. If an bn for sufficiently large n and bn is
convergent, what can you say about an?

2. If an bn for sufficiently large n and bn is
divergent, what can you say about an?

3. If an bn for sufficiently large n and bn is
convergent, what can you say about an?

4. If an bn for sufficiently large n and bn is
divergent, what can you say about an?

Determine if the series in Exercises 5–18 converge
or diverge.

5.
n 1

n 3

n3

6.
n 1

1

2n 7

7.
n 1

1

n3 4

8.
n 1

4
3 n5 8

9.
n 1

n 1

n2 n

10.
n 1

9

3n 1

11.
n 1

arctan n

n3 1

12.
n 1

n3 1

n5 1

13.
n 1

1

n 1 !

14.
n 1

2 sin n

n5 4

15.
n 2

1

n 1

16.
n 1

3n

2n 5n

17.
n 1

n 1

3n2

2

18.
n 1

e1 n

n

Suppose that an is a convergent series with pos-
itive terms. Determine whether the series listed
in Exercises 19–22 necessarily converge. If a se-
ries doesn’t necessarily converge, give an example
of a convergent series an with positive terms for
which it diverges. It may be helpful to remember
that there are only finitely many values of an at least
1, so these have no affect on the convergence of the
series.

19.
n 1

an

n

20.
n 1

n 1

n
an

21.
n 1

nan

22.
n 1

an sin n

23.
n 1

a2
n

24.
n 1

an

In Exercises 25–28, use reindexing like we did in Ex-
amples 5–8 to determine if the given series converge
or diverge.

25.
n 2

1

n2 3

26.
n 1

1

2n 1

27.
n 1

n 2

n2



SECTION 2.5 THE COMPARISON TEST 77

28.
n 1

1

n22n n

Using the Comparison Test, determine if the series
in Exercises 29–38 converge or diverge.

29.
n 1

1

n n 1

30.
n 1

1

n n 1

31.
n 1

n

3n 1

n2

32.
n 1

2n ln n 4

n4 4

33.
n 1

n n

n

34.
n 1

n

n n 1

ln n

n

35.
n 1

1

ln ln n ln n

36.
n 1

1

lnn ln ln n

37.
n 1

4n

n!

38.
n 1

n!

nn

39. Construct an example showing that the Com-
parison Test need not hold if an and bn are not
required to have positive terms.

40. If an, bn 0 and a2
n and b2

n both converge,
show that the series anbn converges.

41. Prove that the series

n 1

1

np sin n

converges for p 2. What about when p 2?

Another way to deal with problems like Exer-
cises 25–28 is to apply the following test.

The Limit Comparison Test. Let an and bn

be series with positive terms. If lim
n

an

bn
is a finite

number, then an and bn both converge or both
diverge.

Exercise 42 leads you through the proof of the
Limit Comparison Test. After that, Exercises 43–
48 present applications, while Exercises 49 and 50
extend the Limit Comparison Theorem to the case
where the limit is 0 or .

42. Suppose that lim
n

an

bn
c where c is a finite

number. Therefore there are positive numbers m

and M with m c M such that m
an

bn
M for

all large n. Use this inequality and the Comparison
Test to derivate the Limit Comparison Test.

43. Show that the series

n 2

n2 3

n4 2

from Example 8 converges using the Limit Compar-
ison Test.

44. Does
n 1

2n2 3n

5 n5
converge or diverge?

45. Does
n 1

n2 2n 1
5 n11 11n

converge or diverge?

46. Does
n 1

n2 2n 1
5 n9 11n

converge or diverge?

47. Suppose that an 0 and an 0. Show that
sin an converges if and only if an converges.

48. Suppose that 0 an 1 for all n. Prove that
arcsin an converges if and only if an converges.

49. Let an and bn be series with positive
terms. If an bn 0 and bn converges, prove that

an converges.

50. Let an and bn be series with positive
terms. If an bn and bn diverges, prove that

an diverges.
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ANSWERS TO SELECTED EXERCISES, SECTION 2.5
1. an converges, by the Comparison Test

3. You cannot conclude anything

5. Converges by comparison to n n3 1 n2

7. Converges by comparison to 1 n3 1 n3 2

9. Converges by comparison to n n5 2 1 n3 2

11. Converges by comparison to
π

2

1

n3 2

13. Converges by comparison to 1 n2

15. Diverges by comparison to 1 n

17. Converges by comparison to 1 9n2

19. Converges by the Comparison Test: an
an

n

21. Need not converge, consider taking an
1 n2

23. Since an converges, an 1 for sufficiently large n. For these values of n, a2
n an, so a2

n converges
by the Comparison Test


