Math 8 Practice Exam 2 Problem Answers

1. Find the equations of the following lines and planes:
(a) the plane through the points $(1,1,0),(1,-4,2)$ and $(-2,3,1)$.
(b) the plane through the origin and parallel to the plane $5 x-2 y+z=15$.
(c) the line through the point $(1,2,3)$ and perpendicular to the plane $x-3 y+5 z=1$.

Answers: (a) $3 x+2 y+5 z=5$ (b) $5 x-2 y+z=0$ (c) $\langle x, y, z\rangle=\langle 1+t, 2-3 t, 3+5 t\rangle$
2. (a) Find the area of the triangle with vertices $(1,-2,5),(1,3,0)$ and $(1,0,1)$.
(b) Find the volume of the parallelepiped determined by the vectors $\overrightarrow{\mathbf{u}}=\langle 1,2,3\rangle$, $\overrightarrow{\mathbf{v}}=\langle 2,0,1\rangle$ and $\overrightarrow{\mathbf{w}}=\langle 3,0,4\rangle$.

Answers: (a) $A=\frac{1}{2}\left|\overrightarrow{P_{0} P_{1}} \times \overrightarrow{P_{0} P_{2}}\right|=\frac{1}{2}|\langle-10,0,0\rangle|=5$ (b) $V=|\overrightarrow{\mathbf{u}} \bullet(\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}})|=$ $|-10|=10$.
3. Consider the pair of planes

$$
x+y+7 z=9 \text { and }(2,-1,5) \bullet(x, y, z)=6 .
$$

(a) Find a vector representation of the line of intersection of these planes.
(b) Find the cosine of the angle between these planes.

Answers: (a) $\overrightarrow{\mathbf{r}}(t)=\langle 5-4 t, 4-3 t, t\rangle(\mathrm{b}) \cos (\theta)=\left|\overrightarrow{\mathbf{n}}_{1} \bullet \overrightarrow{\mathbf{n}}_{2}\right| /\left(\left|\overrightarrow{\mathbf{n}}_{1}\right|\left|\overrightarrow{\mathbf{n}}_{2}\right|\right)=\frac{12}{\sqrt{170}}$.
4. Consider the curve given parametrically by $g(t)=\left(t^{2}, \frac{1}{3} t^{3}\right),-2 \leq t \leq 2$.
(a) Find the arc length of the curve from $t=0$ to $t=2$.
(b) Find a vector representation of the tangent line to the curve at $t=1$.
(c) Suppose a particle is moving along the curve and then flies off at time $t=1$ second, travelling at a constant speed along the tangent line. Find the position of the particle two seconds later.
Answers: (a) $L=\int_{0}^{2}\left|g^{\prime}(t)\right| d t=\int_{0}^{2} \sqrt{4 t^{2}+t^{4}} d t=\int_{0}^{2} t \sqrt{4+t^{2}} d t=\frac{1}{3}(16 \sqrt{2}-8)$. (b) $\overrightarrow{\mathbf{r}}(t)=g(1)+t g^{\prime}(1)=\left\langle 1+2 t, \frac{1}{3}+t\right\rangle$. (c) $\overrightarrow{\mathbf{r}}(2)=\left\langle 5,2 \frac{1}{3}\right\rangle$.
5. (a) Find the projection of the vector $(1,3,-2)$ onto the vector $(1,1,1)$.
(b) Write $(1,3,-2)$ as the sum of a vector parallel to $(1,1,1)$ and a vector perpendicular to $(1,1,1)$.
Answers: (a) $\left\langle\frac{2}{3}, \frac{2}{3}, \frac{2}{3}\right\rangle$ (b) $\langle 1,3,-2\rangle=\left\langle\frac{2}{3}, \frac{2}{3}, \frac{2}{3}\right\rangle+\left\langle\frac{1}{3}, \frac{7}{3},-\frac{8}{3}\right\rangle$.
6. The curves $\overrightarrow{\mathbf{r}}_{1}(t)=\left\langle t^{3}, t^{2}, t\right\rangle$ and $\overrightarrow{\mathbf{r}}_{2}(t)=\left\langle\sin (t)+1, e^{t}, \cos (t)\right\rangle$ intersect at the point $(1,1,1)$. Find the equation of the plane containing both tangent lines at $(1,1,1)$.

Answers: Normal $\overrightarrow{\mathbf{n}}=\overrightarrow{\mathbf{r}}_{1}^{\prime}(1) \times \overrightarrow{\mathbf{r}}_{2}^{\prime}(0)=\langle-1,1,1\rangle$. The plane is $-x+y+z=1$.
7. (a) Find the center and radius of the sphere $2 x^{2}+2 y^{2}+2 z^{2}+6 x-8 z+2=0$.
(b) Find the arc length of the curve $\overrightarrow{\mathbf{r}}(t)=\left\langle t, \frac{t^{3}}{3}+4, \frac{\sqrt{2}}{2} t^{2}\right\rangle$ from $t=0$ to $t=1$.

Answers: (a) Center: $\left(-\frac{3}{2}, 0,2\right)$, Radius: $r=\frac{\sqrt{21}}{2}$ (b) $L=\int_{0}^{1} \sqrt{1+2 t^{2}+t^{4}} d t=$ $\int_{0}^{1}\left(1+t^{2}\right) d t=\frac{4}{3}$.
8. Are the lines $\frac{x-1}{4}=\frac{y-2}{-4}=\frac{z-3}{6}$ and $\overrightarrow{\mathbf{r}}(t)=\langle 3+t, 2 t, 6+3 t\rangle$ skew, parallel, or intersecting?
Answers: The lines intersect at $(3,0,6)$.
9. A helicopter is to fly directly from the helipad at the origin toward the point $(1,1,1)$ at a speed of 60 feet $/ \mathrm{sec}$ (and continue flying in that direction.)
(a) Find a unit vector $\overrightarrow{\mathbf{u}}$ in the direction of motion.
(b) Using part (a), what is the position of the helicopter after t seconds? after 10 seconds?
Answers: (a) $\overrightarrow{\mathbf{u}}=\left\langle\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right\rangle$. (b) $\overrightarrow{\mathbf{r}}(t)=20 \sqrt{3} t\langle 1,1,1\rangle$. After 10s $\overrightarrow{\mathbf{r}}(10)=$ $\langle 200 \sqrt{3}, 200 \sqrt{3}, 200 \sqrt{3}\rangle$.
10. Consider the function $f(x, y)=\sqrt{1-\ln \left(x^{2}+y^{2}\right)}$
(a) Find the domain of f.
(b) Compute the limit as $(x, y) \rightarrow\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$ of $f(x, y)$.
(c) Compute the partial derivatives f_{x} and f_{y}.

Answers: (a) Domain $D=\left\{(x, y) \in \mathbf{R}^{2} \mid 0<x^{2}+y^{2} \leq e\right\}$
(b) The limit is $\underset{(x, y) \rightarrow\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)}{ } \sqrt{1-\ln \left(x^{2}+y^{2}\right)}=1$.
(c) The partial derivatives are:

$$
\begin{aligned}
& f_{x}(x, y)=\frac{-x}{\left(x^{2}+y^{2}\right) \sqrt{1-\ln \left(x^{2}+y^{2}\right)}} \\
& f_{y}(x, y)=\frac{-y}{\left(x^{2}+y^{2}\right) \sqrt{1-\ln \left(x^{2}+y^{2}\right)}}
\end{aligned}
$$

