Assignment 16: Matrix equations and matrix algebra

1. For the two matrices below, find the dimension of the solution space of $A \mathbf{x}=\mathbf{0}$. Then find all the solutions. You should be able to determine the dimension without finding the solutions.

$$
A=\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \text { and } A=\left(\begin{array}{ccccc}
1 & 2 & 0 & 0 & 3 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 2
\end{array}\right)
$$

2. Suppose that the matrix A has row-reduced echelon form R given below.

$$
A=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
6 & 7 & 8 & 9 & 1 \\
2 & 3 & 4 & 5 & 6 \\
7 & 8 & 9 & 1 & 2
\end{array}\right) \text { and } R=\left(\begin{array}{ccccc}
1 & 0 & -1 & 0 & 0 \\
0 & 1 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Find all solutions to the matrix equation $A \mathbf{x}=\left(\begin{array}{l}6 \\ 7 \\ 8 \\ 9\end{array}\right)$ given that $\mathbf{x}=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right)$ is a particular solution.
3. Let $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right), B=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)$, and $C=\left(\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right)$.

Determine which of the nine products $A^{2}, A B, A C, B A, B^{2}, B C, C A, C B, C^{2}$ are defined. Evaluate the first three valid products.
4. Find $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)^{1234}$. You may want to find $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)^{2}$ and $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)^{3}$ to start. Can you prove your result?
5. Find two 2×2 matrices A and B neither of which is the zero matrix, but for which $A B=\mathbf{0}$.

