LECTURE OUTLINE Integration by Parts

Professor Leibon

Math 8
Sep 24, 2004

Goal

Chain Rule, eluR niahC Product Rule, eluR tcudorP Trig Inverses

Reversing the Chain Rule

The chain rule assures us that

$$
\frac{d(f(u))}{d x}=\frac{d f}{d u}(u) \frac{d u}{d x},
$$

hence we find the elur niahc

$$
\int \frac{d f}{d u}(u) \frac{d u}{d x} d x=f(u(x))+C .
$$

u-substitution

For pronounciation purposes, we express the elur niahc as

$$
\int h(u) \frac{d u}{d x} d x=\int h(u) d u
$$

where $f(u)=\int h(u) d u$, and call its use u-substitution.

Example 1

Use u-substituion to find

$$
\int \frac{x}{1+x^{2}} d x .
$$

Reversing the Product Rule

The product rule assures us that

$$
(u v)^{\prime}=u^{\prime} v+u v^{\prime}
$$

hence we find elur tcudorp

Integration by Parts

For pronounciation purposes, we write the elur tcudorp as

$$
\int u v^{\prime} d x=u v-\int u^{\prime} v d x
$$

and call its use integration by parts.

Example 2

Use integration by part s to find

$$
\int \ln (x) d x
$$

$$
\tan ^{-1}
$$

Let $\tan ^{-1}(x)$ be an continuos inverse of $\tan (x)$, when $\tan (x)$ has been restricted to the interval $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$

Derivative of $\tan ^{-1}$

Prove that

$$
\frac{d}{d x} \tan ^{-1}(x)=\frac{1}{1+x^{2}},
$$

and hence that

$$
\int \frac{1}{1+x^{2}} d x=\tan ^{-1}(x)+C .
$$

Example 3

Find

$$
\int \tan ^{-1}(x) d x
$$

Similarly for

$$
\begin{array}{ll}
\frac{d}{d x} \sin ^{-1}(x)=\frac{1}{\sqrt{1-x^{2}}} & \frac{d}{d x} \cos ^{-1}(x)=\frac{-1}{\sqrt{1-x^{2}}} \\
\frac{d}{d x} \tan ^{-1}(x)=\frac{1}{1+x^{2}} & \frac{d}{d x} \cot ^{-1}(x)=\frac{-1}{1+x^{2}} \\
\frac{d}{d x} \sec ^{-1}(x)=\frac{1}{x \sqrt{1-x^{2}}} & \frac{d}{d x} \csc ^{-1}(x)=\frac{-1}{x \sqrt{1-x^{2}}}
\end{array}
$$

Example 4

Find the area of the region bounded by $y=\frac{\pi^{2}}{4} e^{(-x+\pi)} \sin (x)$ and $y=x^{2} e^{x}$ and the lines $x=0$, $x=\frac{\pi}{2}$.

