LECTURE OUTLINE
 Our Friend the Integral

Professor Leibon

Math 8
Sep 22, 2004

Goals

Course Information Integral Review Area Between Curves Volumes of Revolution

Areas between curves

The area A of the region bounded by the curves $y=f(x)$ and $y=g(x)$, and the lines $x=a, x=b$, where f and g are continuos and $f(x) \geq g(x)$ for all x in $[a, b]$ is

$$
A=\int_{a}^{b}(f(x)-g(x)) d x
$$

Example 1

Find the area of the region
bounded by $y=x e^{-\frac{x^{2}}{2}}$ and
$y=\frac{1}{\sqrt{e}} x^{2}$ and the lines $x=0$,
$x=t$, where $t>0$.

Example 1

Volumes of Revolution

Let S be a solid that lies between $x=a$ and $x=b$. If the cross sectional area of S in the plane P_{x}, through x and perpendicular to the $x-a x i s$ is $A(x)$, where A is a continuous function, then the volume of S is

$$
V=\int_{a}^{b} A(x) d x
$$

Example 2

Find the volume of the region obtained by rotating the region bounded by $y=\sin (x)$ from 0 to 2π about the x-axis. Such a region is called a volume of revolution.

Example 2

