# LECTURE OUTLINE <br> Absolute and Conditional Convergence 

Professor Leibon

Math 8
Oct. 8, 2004

## Goals

## Remainder Estimates for

 Alternating Series Absolute Convergence Conditional Convergence
## Warm Up

Find where $\sum \frac{f(n)}{n^{p}}$ converges and explain why when

$$
f(n)=1
$$

and when

$$
f(n)=(-1)^{n}
$$

$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \operatorname{verses} \sum_{n=1}^{\infty} \frac{1}{n}$


## Alternating Series

An alternating series is one whose terms are alternately positive and negative. In other words,
$\sum(-1)^{n-1} b_{n}$ with $b_{n}>0$.
Alternating Series Test: If $b_{n+1} \leq b_{n}$ and
$\lim _{n \rightarrow \infty} b_{n}=0$, then the alternating series is convergent.

Ex: Is $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} \ln (n)}{\sqrt{n}}$ convergent?

## Remainder Estimate

Given a series $\sum a_{k}$ for each $n$ we may express our series as $\sum a_{i}=s_{n}+R_{n}$. We call $R_{n}=\sum_{k=n+1}^{\infty} a_{k}$ the remainder.

Alternating Series Remainder Estimate: Given a convergent alternating series

$$
\left|R_{n}\right| \leq b_{n+1} .
$$

Ex: How big will $n$ need to be so that $s_{n}$ is with in 0.01 of $\sum \frac{(-1)^{n-1}}{\sqrt{n}}$.

## Absolute Convergence

A series $\sum a_{n}$ is called absolutely convergent if the series $\sum\left|a_{n}\right|$ is convergent.

Theorem: If a series is absolutely convergent, then it is convergent.

Ex: Is $\sum_{n=1}^{\infty} \frac{\left.(-1)^{n} n^{3}+3 n+2\right)}{\sqrt{n^{9}+7}}$ convergent?

## Conditional Convergence

A series $\sum a_{n}$ is called conditionally convergent if the series $\sum a_{n}$ is convergent but $\sum\left|a_{n}\right|$ is divergent.

When is $\sum \frac{(-1)^{n}}{n^{p}}$ conditionally convergent.

## In Between Alternating and Positive

Recall, we can factor a number into distinct primes raised to some powers. For example,

$$
12=(2)^{2}(3)
$$

while

$$
30=(2)(3)(5) .
$$

We say that 30 has 3 distinct factors (2,3, and 5), while we say that 12 has a factor with a power bigger than 1 (namely the 2 is squared).

## In Between

Let $f(n)$ be equal to the Möbius Function which is
0 if some factor of $n$ has a power bigger than 1 ,
+1 if the factors are distinct and there are an even number of them,
and -1 if the factors are distinct and there are an odd number of them.

The Challenge: Find where $\sum \frac{M \ddot{\partial b i u s}(n)}{n^{p}}$ converges.

