LECTURE OUTLINE Absolute and Conditional Convergence

Professor Leibon

Math 8

Oct. 8, 2004

Remainder Estimates for Alternating Series Absolute Convergence Conditional Convergence

Warm Up

Find where $\sum \frac{f(n)}{n^p}$ converges and explain why when

f(n) = 1

and when

 $f(n) = (-1)^n.$

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$
 verses $\sum_{n=1}^{\infty} \frac{1}{n}$

Alternating Series

An *alternating series* is one whose terms are alternately positive and negative. In other words, $\sum (-1)^{n-1} b_n$ with $b_n > 0$.

Alternating Series Test: If $b_{n+1} \leq b_n$ and $\lim_{n\to\infty} b_n = 0$, then the alternating series is convergent.

Ex: Is
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} \ln(n)}{\sqrt{n}}$$
 convergent?

Remainder Estimate

Given a series $\sum a_k$ for each n we may express our series as $\sum a_i = s_n + R_n$. We call $R_n = \sum_{k=n+1}^{\infty} a_k$ the *remainder*.

Alternating Series Remainder Estimate: Given a convergent alternating series

$$|R_n| \le b_{n+1}.$$

Ex: How big will *n* need to be so that s_n is with in 0.01 of $\sum \frac{(-1)^{n-1}}{\sqrt{n}}$.

Absolute Convergence

A series $\sum a_n$ is called *absolutely convergent* if the series $\sum |a_n|$ is convergent.

Theorem: If a series is absolutely convergent, then it is convergent.

Ex: Is
$$\sum_{n=1}^{\infty} \frac{(-1)^n (n^3 + 3n + 2)}{\sqrt{n^9 + 7}}$$
 convergent?

Conditional Convergence

A series $\sum a_n$ is called *conditionally convergent* if the series $\sum a_n$ is convergent but $\sum |a_n|$ is divergent.

When is $\sum \frac{(-1)^n}{n^p}$ conditionally convergent.

In Between Alternating and Positive

Recall, we can factor a number into *distinct primes* raised to some *powers*. For example,

$$12 = (2)^2(3)$$

while

$$30 = (2)(3)(5).$$

We say that 30 has 3 *distinct factors* (2,3, and 5), while we say that 12 has a factor with a *power* bigger than 1 (namely the 2 is squared).

In Between

Let f(n) be equal to the $M\ddot{o}bius$ Function which is

0 if some factor of n has a *power* bigger than 1,

+1 if the factors are distinct and there are an even number of them,

and -1 if the factors are distinct and there are an odd number of them.

The Challenge: Find where $\sum \frac{M\ddot{o}bius(n)}{n^p}$ converges.