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Comparison Test

Suppose that
∑

an and
∑

bn are series with
positive terms.

(1) If
∑

bn converges and an ≤ bn, then
∑

an

converges.

(2) If
∑

bn is divergent and and an ≥ bn, then
∑

an is divergent.

Ex: Decide whether:
∑∞

n=1
3n−1

5n+n+4 and
∑∞

n=1
n2+2n+5
n3−(1/2) are convergent or divergent.

LECTURE OUTLINE The Comparison Test – p.3/10



r:
∑∞

n=1
3n−1

5n+n+4
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Real Numbers are not Nutzo

Monotonic Sequence theorem: Every
bounded, monotonic sequence is
convergent.
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Limit Comparison Test

Suppose that
∑

an and
∑

bn are series with
positive terms and

lim
n→∞

an

bn
= c

where 0 < c < ∞, then either both series
converge or diverge.

Ex: Decide whether
∑∞

n=1
n3+3n+2√

n9+7
is convergent

or divergent.
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∑∞
n=1

n3+3n+2√
n9+7
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Alternating Series

An alternating series is one whose terms are
alternately positive and negative. In other words,
∑

(−1)n−1bn with bn > 0.

Alternating Series Test: If bn+1 ≤ bn and
limn→∞ bn = 0, then the alternating series is
convergent.

Ex: For which p does
∑∞

n=1
(−1)n

np converge.
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