LECTURE OUTLINE Dot product and cross product

Professor Leibon

Math 8
Oct. 27, 2004

Dot Product

Rounding Review The dot product

 Scalar and Vector projection
Rounding 101

We will interpret "approximate the following NUMBER to N digits" to mean that we are we know the NUMBER rounded to N places. (This means we replace the NUMBER with the a number in the form $\frac{M}{10^{N}}$ such that $\left|N U M B E R-\frac{M}{10^{N}}\right| \leq \frac{5}{10^{N+1}}$. Notice this leaves two possibilities when our number is in the form $\frac{K}{10^{N}}+\frac{5}{10^{N+1}}$. What do you usually do and why?).

Yesterday we found $\int_{0}^{1} \sqrt{1+x^{4}} d x=1.090918803 \pm 0.002297794121$, or rather that $\int_{0}^{1} \sqrt{1+x^{4}} d x$ was somewhere in the interval [1.08862101, 1.09321660] (by using the first 4 terms of the series and the remainder estimate for alternating series). Have we approximated $\int_{0}^{1} \sqrt{1+x^{4}} d x$ to 2 digits? How about to 3 digits?

Our first approximation (using 3 terms) was the observation that $\int_{0}^{1} \sqrt{1+x^{4}} d x$ was somewhere in the interval [1.081303419, 1.090918803]. Had we already approximated $\int_{0}^{1} \sqrt{1+x^{4}} d x$ to 2 digits?

Dot Product

Given two vectors $\hat{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\hat{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$, then

$$
\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{3}+a_{3} b_{3}
$$

Ex.: Let $\vec{a}=<-1,2,5>$ and $\vec{b}=<2,2,7>$, and find $\vec{a} \cdot \vec{b}$.
basic properties

$$
\begin{gathered}
\vec{a} \cdot \vec{a}=|a|^{2} \\
\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a} \\
\vec{a} \cdot(\vec{b}+\vec{c})=\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}) \\
(c \vec{a}) \cdot \vec{b}=c(\vec{a} \cdot \vec{b})=\vec{a} \cdot(c \vec{b})
\end{gathered}
$$

Ex.: Let $\vec{a}=<-1,2,5>$ and $\vec{b}=<2,2,7>$, and find $(\vec{a}+3 \vec{b}) \cdot(2 \vec{a}+\vec{b})$.

The Big Fact

Letting θ be the angle between \vec{a} and \vec{b}, we have

$$
\cos (\theta)=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}
$$

Ex.: Let $\vec{a}=<-1,2,5>$ and $\vec{b}=<2,2,7>$, and find the angle between \vec{a} and \vec{b}.

Orthogonal

Two non-zero vectors \vec{a} and \vec{b} are orthogonal if $\vec{a} \cdot \vec{b}=0$.

Ex.: Let $\vec{a}=<-1,2,5>$ and $\vec{b}=<2,2,7>$, and find a non zero vector orthogonal to \vec{b}. Should you be able to find a vector orthogonal to both \vec{a} and \vec{b} ?

Projection

The projection of \vec{b} onto \vec{a} is

$$
\operatorname{proj}_{\vec{a}} \vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^{2}} \vec{a} .
$$

The component of \vec{b} in the \vec{a} direction is

$$
\operatorname{comp}_{\vec{a}} \vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|} .
$$

Ex.: Let $\vec{a}=<-1,2,5>$ and $\vec{b}=\langle 2,2,7>$, and find the component of \vec{b} in the \vec{a} direction and the projection of \vec{b} onto \vec{a}.

Examples

Let $\vec{a}=\langle-1,2,5\rangle$ and $\vec{b}=\langle 2,2,7\rangle$. Find a length 3 vector such that its component in the \vec{b} is 2 . What is your vectors component in the \vec{a} direction? Is it possible to find a length 3 vector such that its component in the \vec{b} is 2 which is perpendicular to \vec{a} ?

Cross Product

Given vectors \vec{a} and \vec{b} we define $\vec{a} \times \vec{b}$ to be the unique vector satisfying
(1) $\vec{a} \times \vec{b}$ is orthogonal to \vec{a} and to \vec{b} (or zero).
(2) It has length equal to the area of the parallelogram determined by \vec{a} and \vec{b}.
(3) $\vec{a} \times \vec{b}$ is in the direction determined by the right hand rule going from \vec{a} to \vec{b}.

Main Theorem

Let $\hat{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\hat{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$, then $\vec{a} \times \vec{b}$ equals

$$
\left(a_{2} b_{3}-a_{3} b_{2}\right) \hat{i}-\left(a_{1} b_{3}-a_{3} b_{1}\right) \hat{j}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \hat{k}
$$

Example: Let $\vec{a}=<-1,2,5>$ and $\vec{b}=<2,2,7>$ and find $\vec{a} \times \vec{b}$. Find a length 3 vector such that its component in the \vec{b} is 2 which is perpendicular to \vec{a}.

