LECTURE OUTLINE Dot product and cross product

Professor Leibon

Math 8

Oct. 27, 2004

Dot Product

Rounding Review The dot product Scalar and Vector projection

Rounding 101

We will interpret "approximate the following NUMBER to N digits" to mean that we are we know the NUMBER rounded to N places. (This means we replace the NUMBER with the a number in the form $\frac{M}{10^N}$ such that $\left| NUMBER - \frac{M}{10^N} \right| \le \frac{5}{10^{N+1}}$. Notice this leaves two possibilities when our number is in the form $\frac{K}{10^N} + \frac{5}{10^{N+1}}$. What do you usually do and why?).

Yesterday we found $\int_0^1 \sqrt{1 + x^4} dx = 1.090918803 \pm 0.002297794121$, or rather that $\int_0^1 \sqrt{1 + x^4} dx$ was somewhere in the interval [1.08862101, 1.09321660] (by using the first 4 terms of the series and the remainder estimate for alternating series). Have we approximated $\int_0^1 \sqrt{1 + x^4} dx$ to 2 digits? How about to 3 digits?

Our first approximation (using 3 terms) was the observation that $\int_0^1 \sqrt{1 + x^4} dx$ was somewhere in the interval [1.081303419, 1.090918803]. Had we already approximated $\int_0^1 \sqrt{1 + x^4} dx$ to 2 digits?

Dot Product

Given two vectors $\hat{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ and $\hat{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$, then

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_3 + a_3 b_3$$

Ex.: Let $\vec{a} = < -1, 2, 5 >$ and $\vec{b} = < 2, 2, 7 >$, and find $\vec{a} \cdot \vec{b}$.

basic properties

$$\vec{a} \cdot \vec{a} = |a|^2$$
$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$
$$\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c})$$
$$(c\vec{a}) \cdot \vec{b} = c(\vec{a} \cdot \vec{b}) = \vec{a} \cdot (c\vec{b})$$

Ex.: Let $\vec{a} = < -1, 2, 5 >$ and b = < 2, 2, 7 >, and find $(\vec{a} + 3\vec{b}) \cdot (2\vec{a} + \vec{b})$.

The Big Fact

Letting θ be the angle between \vec{a} and \vec{b} , we have

$$\cos(\theta) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}$$

Ex.: Let $\vec{a} = < -1, 2, 5 >$ and $\vec{b} = < 2, 2, 7 >$, and find the angle between \vec{a} and \vec{b} .

Orthogonal

Two non-zero vectors \vec{a} and \vec{b} are orthogonal if $\vec{a} \cdot \vec{b} = 0$.

Ex.: Let $\vec{a} = < -1, 2, 5 >$ and $\vec{b} = < 2, 2, 7 >$, and find a non zero vector orthogonal to \vec{b} . Should you be able to find a vector orthogonal to both \vec{a} and \vec{b} ?

Projection

The projection of \vec{b} onto \vec{a} is

$$proj_{\vec{a}}\vec{b} = \frac{\vec{a}\cdot\vec{b}}{|\vec{a}|^2}\vec{a}.$$

The component of \vec{b} in the \vec{a} direction is

$$comp_{\vec{a}}\vec{b} = \frac{\vec{a}\cdot\vec{b}}{|\vec{a}|}$$

Ex.: Let $\vec{a} = < -1, 2, 5 >$ and $\vec{b} = < 2, 2, 7 >$, and find the component of \vec{b} in the \vec{a} direction and the projection of \vec{b} onto \vec{a} .

Examples

Let $\vec{a} = < -1, 2, 5 >$ and $\vec{b} = < 2, 2, 7 >$. Find a length 3 vector such that its component in the \vec{b} is 2. What is your vectors component in the \vec{a} direction? Is it possible to find a length 3 vector such that its component in the \vec{b} is 2 which is perpendicular to \vec{a} ?

Cross Product

Given vectors \vec{a} and \vec{b} we define $\vec{a} \times \vec{b}$ to be the unique vector satisfying

- (1) $\vec{a} \times \vec{b}$ is orthogonal to \vec{a} and to \vec{b} (or zero).
- (2) It has length equal to the area of the parallelogram determined by \vec{a} and \vec{b} .

(3) $\vec{a} \times \vec{b}$ is in the direction determined by the right hand rule going from \vec{a} to \vec{b} .

Main Theorem

Let $\hat{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ and $\hat{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$, then $\vec{a} \times \vec{b}$ equals

$$(a_2b_3 - a_3b_2)\hat{i} - (a_1b_3 - a_3b_1)\hat{j} + (a_1b_2 - a_2b_1)\hat{k}.$$

Example: Let $\vec{a} = < -1, 2, 5 >$ and $\vec{b} = < 2, 2, 7 >$ and find $\vec{a} \times \vec{b}$. Find a length 3 vector such that its component in the \vec{b} is 2 which is perpendicular to \vec{a} .