LECTURE OUTLINE
 Taylor and Maclaurin series Review

Professor Leibon

Math 8
Oct. 26, 2004

Goals
Review Remainder Estimates
Manipulating Taylor Series Radius of Convergence

Taylor's Inequality

Given $f(x)$ let the nth Taylor Expansion be
$T_{N}(x)=\sum_{n=0}^{N} \frac{f^{n}(a)}{n!}(x-a)^{n}$, and let the Nth Remainder be
$R_{N}(x)=f(x)-T_{N}(x)$.
Theorem: Suppose $\left|f^{n+1}(x)\right| \leq M$ for every x in $[a, x]$ if $x>a$ (or $[x, a]$ if $x<a$), then

$$
\left|R_{N}(x)\right| \leq M \frac{|x-a|^{N+1}}{(N+1)!} .
$$

Notation I Like

We write $x=y \pm e$ to mean that x is in the interval $[y-e, y+e]$. Talyor's Inequality asserts

$$
f(x)=T_{N}(x) \pm M \frac{|x-a|^{N+1}}{(N+1)!} .
$$

(12.12: 25.) Use Taylor's Inequality to determine the number of terms of the Maclaurin series for e^{x} that should be be used to estimate $e^{0.1}$ to within 0.00001 . (While we are at it, find a number C so that $e^{0.1}=C \pm 0.00001$.)

A Different Sort of Example

(12.Review: 56) Use series to approximate

$$
\int_{0}^{1} \sqrt{1+x^{4}} d x
$$

correct to two decimal places. (Due this with and without
Taylor's Inequality.)

Radius of Convergence

Recall, by the ratio test, $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ will converge if
$0<\lim _{n \rightarrow \infty}\left|\frac{c_{n+1}(x-a)}{c_{n}}\right|<1$ and diverge if
$1<\lim _{n \rightarrow \infty}\left|\frac{c_{n+1}(x-a)}{c_{n}}\right|<\infty$.
(12.Review: 44) Find the radius of convergence of the series

$$
\sum_{n=0}^{\infty} \frac{(2 n)!}{(n!)^{2}} x^{n} .
$$

Manipulating Series

(12.Review: 53) Find the Maclaurin series and radius of convergence of

$$
f(x)=(16-x)^{-1 / 4} .
$$

