LECTURE OUTLINE
 Coordinates and vectors

Professor Leibon

Math 8
Oct. 22, 2004

Goals

Introduce Coordinates Vectors
 Vector Addition

Coordinates

Introducing the (x, y, z)
 coordinates of three dimensional
 space.

Movement

Objects can "move" through these coordinates $(x(t), y(t), z(t))$.

Vector

We will also also want to encode direction in magnitude. For example, we will want to say go in direction "blah" for a distance of "blah". We encode such a statement with a vector,

$$
\vec{v}=x \hat{i}+y \hat{j}+z \hat{k}=<x, y, z>
$$

Norm

Given a vector $\vec{v}=x \hat{i}+y \hat{j}+z \hat{k}$ we encoded its magnitude (also norm or length) via

$$
|\vec{v}|=\sqrt{x^{2}+y^{2}+z^{2}}
$$

Ex: Let $\vec{a}=<-1,2,5>$ and find $|\vec{a}|$.

Scalar Multiplication

To encode the vector's direction, we must first learn scalar multiplication:

$$
c \vec{v}=c x \hat{i}+c y \hat{j}+c z \hat{k}
$$

Notice, the norm satisfies

$$
|c \vec{v}|=|c||\vec{v}| .
$$

Direction

\vec{v} 's direction is given by

$$
\hat{v}=\frac{\vec{v}}{|\vec{v}|}
$$

\hat{v} is called a unit vector and has norm 1, and is usually viewed as unitless.

Position Vector

In Euclidean space, once we've chosen a coordinate system we can view the point (x, y, z) as going from the origin in the direction and with the distance determined by the vector

$$
\vec{r}=x \hat{i}+y \hat{j}+z \hat{k} .
$$

We call \vec{r} our points position vector.
Ex: Describe the set points with position vectors satisfying $|\vec{r}|=4$.

Displacement

In Euclidean space, staring at a point P with coordinate $\left(x_{1}, y_{1}, z_{1}\right)$ and going to a point Q with coordinate $\left(x_{2}, y_{2}, z_{2}\right)$ can be accomplished by via the displacement vector

$$
\overrightarrow{P Q}=\left(x_{2}-x_{1}\right) \hat{i}+\left(y_{2}-y_{1}\right) \hat{j}+\left(z_{2}-z_{1}\right) \hat{k} .
$$

We are really lucky to do so!!!

Vector Addition

This uses the following notion of addition: Letting $\vec{v}=<x_{1}, y_{1}, z_{1}>$ and $\vec{w}=<x_{2}, y_{2}, z_{2}>$ we let

$$
\begin{aligned}
\vec{v}+\vec{w} & =<x_{1}, y_{1}, z_{1}>+<x_{2}, y_{2}, z_{2}> \\
& =<x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}>
\end{aligned}
$$

Ex: Describe the set points with position
vectors satisfying $|\vec{r}-<1,2,0>|=4$.

Properties

Scalar multiplication and vector addition satisfy some rules that can be useful in manipulating them. Let \vec{t}, \vec{v} and \vec{w} be vectors and c be a scalar.

$$
\begin{array}{ll}
\vec{v}+\vec{w}=\vec{w}+\vec{v} & \text { commutativity } \\
\vec{t}+(\vec{v}+\vec{w})=(\vec{t}+\vec{v})+\vec{w} & \text { Associativity } \\
c(\vec{v}+\vec{w})=c \vec{v}+c \vec{w} & \text { Distributivity }
\end{array}
$$

Example

Let $\vec{a}=<-1,2,5>$ and $\vec{b}=\langle 2,2,7>$.
Find $|\vec{a}|, \vec{a}+\vec{b}, \vec{a}-\vec{b}$, and $3 \vec{a}+4 \vec{b}$. Find the equation of a sphere centered at \vec{a} that contains \vec{b} in its boundary.

