LECTURE OUTLINE Coordinates and vectors

Professor Leibon

Math 8

Oct. 22, 2004

Introduce Coordinates Vectors Vector Addition

Coordinates

Introducing the (x, y, z)coordinates of three dimensional space.

LECTURE OUTLINE Coordinates and vectors - p.3/13

Movement

Objects can "move" through these coordinates (x(t), y(t), z(t)).

We will also also want to encode direction in magnitude. For example, we will want to say go in direction "blah" for a distance of "blah". We encode such a statement with a *vector*,

$$\vec{v} = x\hat{i} + y\hat{j} + z\hat{k} = < x, y, z >$$

Norm

Given a vector $\vec{v} = x\hat{i} + y\hat{j} + z\hat{k}$ we encoded its magnitude (also norm or length) via

$$|\vec{v}| = \sqrt{x^2 + y^2 + z^2},$$

Ex: Let $\vec{a} = < -1, 2, 5 >$ and find $|\vec{a}|$.

Scalar Multiplication

To encode the vector's direction, we must first learn *scalar multiplication*:

$$c\vec{v} = cx\hat{i} + cy\hat{j} + cz\hat{k}$$

Notice, the norm satisfies

$$|c\vec{v}| = |c||\vec{v}|.$$

Direction

\vec{v} 's direction is given by

$$\hat{v} = \frac{\vec{v}}{|\vec{v}|}$$

 \hat{v} is called a *unit vector* and has norm 1, and is usually viewed as unitless.

Position Vector

In Euclidean space, once we've chosen a coordinate system we can view the point (x, y, z) as going from the origin in the direction and with the distance determined by the vector

$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}.$$

We call \vec{r} our points *position vector*.

Ex: Describe the set points with position vectors satisfying $|\vec{r}| = 4$.

Displacement

In Euclidean space, staring at a point Pwith coordinate (x_1, y_1, z_1) and going to a point Q with coordinate (x_2, y_2, z_2) can be accomplished by via the *displacement vector*

$$\vec{PQ} = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k}.$$

We are really lucky to do so!!!

Vector Addition

This uses the following notion of addition: Letting $\vec{v} = \langle x_1, y_1, z_1 \rangle$ and $\vec{w} = \langle x_2, y_2, z_2 \rangle$ we let

$$\vec{v} + \vec{w} = \langle x_1, y_1, z_1 \rangle + \langle x_2, y_2, z_2 \rangle$$

$$= \langle x_1 + x_2, y_1 + y_2, z_1 + z_2 \rangle$$

Ex: Describe the set points with position

vectors satisfying $|\vec{r} - < 1, 2, 0 > | = 4$.

Properties

Scalar multiplication and vector addition satisfy some rules that can be useful in manipulating them. Let \vec{t} , \vec{v} and \vec{w} be vectors and c be a scalar.

 $\vec{v} + \vec{w} = \vec{w} + \vec{v} \qquad commutativity$ $\vec{t} + (\vec{v} + \vec{w}) = (\vec{t} + \vec{v}) + \vec{w} \quad Associativity$ $c(\vec{v} + \vec{w}) = c\vec{v} + c\vec{w} \qquad Distributivity$

Example

Let $\vec{a} = < -1, 2, 5 >$ and $\vec{b} = < 2, 2, 7 >$. Find $|\vec{a}|, \vec{a} + \vec{b}, \vec{a} - \vec{b}$, and $3\vec{a} + 4\vec{b}$. Find the equation of a sphere centered at \vec{a} that contains \vec{b} in its boundary.