
IN
D

IR
E

C
T

,
IS

E
x
p

LECTURE OUTLINE
Coordinates and vectors

Professor Leibon

Math 8

Oct. 22, 2004

LECTURE OUTLINE Coordinates and vectors – p.1/13



Goals

Introduce Coordinates
Vectors

Vector Addition
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Coordinates

Introducing the (x, y, z)

coordinates of three dimensional
space.
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Movement

Objects can "move" through these
coordinates (x(t), y(t), z(t)).
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Vector

We will also also want to encode
direction in magnitude. For
example, we will want to say go in
direction "blah" for a distance of
"blah". We encode such a
statement with a vector,

~v = xî + yĵ + zk̂ =< x, y, z >
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Norm

Given a vector ~v = xî + yĵ + zk̂ we encoded its
magnitude (also norm or length ) via

|~v| =
√

x2 + y2 + z2,

Ex: Let ~a =< −1, 2, 5 > and find |~a|.
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Scalar Multiplication

To encode the vector’s direction, we
must first learn scalar multiplication:

c~v = cxî + cyĵ + czk̂

Notice, the norm satisfies

|c~v| = |c||~v|.
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Direction

~v ’s direction is given by

v̂ =
~v

|~v|

v̂ is called a unit vector and has norm 1,
and is usually viewed as unitless.
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Position Vector

In Euclidean space, once we’ve chosen a
coordinate system we can view the point (x, y, z)

as going from the origin in the direction and with
the distance determined by the vector

~r = xî + yĵ + zk̂.

We call ~r our points position vector.

Ex: Describe the set points with position vectors
satisfying |~r| = 4.
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Displacement

In Euclidean space, staring at a point P

with coordinate (x1, y1, z1) and going to a
point Q with coordinate (x2, y2, z2) can be
accomplished by via the displacement vector

~PQ = (x2 − x1)̂i + (y2 − y1)ĵ + (z2 − z1)k̂.
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We are really lucky to do so!!!
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Vector Addition

This uses the following notion of
addition: Letting ~v =< x1, y1, z1 > and
~w =< x2, y2, z2 > we let

~v + ~w = < x1, y1, z1 > + < x2, y2, z2 >

= < x1 + x2, y1 + y2, z1 + z2 > .

Ex: Describe the set points with position

vectors satisfying |~r− < 1, 2, 0 > | = 4.
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Properties

Scalar multiplication and vector addition satisfy
some rules that can be useful in manipulating
them. Let ~t, ~v and ~w be vectors and c be a scalar.

~v + ~w = ~w + ~v commutativity

~t + (~v + ~w) = (~t + ~v) + ~w Associativity

c(~v + ~w) = c~v + c~w Distributivity
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Example

Let ~a =< −1, 2, 5 > and ~b =< 2, 2, 7 >.

Find |~a|, ~a +~b, ~a−~b, and 3~a + 4~b. Find the
equation of a sphere centered at ~a that
contains ~b in its boundary.
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