LECTURE OUTLINE Taylor and Maclaurin series

Professor Leibon

Math 8

Oct. 20, 2004

Approximating functions by a Taylor Series Taylor Remainder Estimate

Power Series Terms

Last Time We Learned: A function f(x) given by power series centered at a equals $\sum_{n=0}^{\infty} \frac{f^n(a)}{n!} (x-a)^n$ inside its radius of convergence.

Suppose we don't know whether f(x) is given by a power series, how can we interpret this $\sum_{n=0}^{\infty} \frac{f^n(a)}{n!} (x-a)^n$?

Tangent Line Approximation

Near a

$$f(x) \approx f(a) + f^1(a)(x-a) \equiv P_1(x,a).$$

Example: Approximate $\sqrt{1.01}$.

Quadratic Approximation

Even better, near a

$$f(x) \approx f(a) + f^1(a)(x-a) + \frac{1}{2}f^2(a)(x-a)^2 \equiv P_2(x,a).$$

Example: Better approximate $\sqrt{1.01}$.

Quantitative Estimate

Given f(x) let the nth Taylor Expansion be $T_N(x) = \sum_{n=0}^{N} \frac{f^n(a)}{n!} (x-a)^n$, and let the *Nth Remainder* be $R_N(x) = f(x) - T_N(x)$.

Theorem: Suppose $|f^{n+1}(x)| \le M$ for every x in [a, x] if x > a (or [x, a] if x < a), then

$$|R_N(x)| \le M \frac{|x-a|^{N+1}}{(N+1)!}.$$

At least how good was our approximation of $\sqrt{1.01}$?

The Next Term

The Usual Demand

Example: How many terms of the MacClaurin series of sin(x) do you need to estimate sin(1) to with in 0.001? Compute sin(1) to with in 0.001. (This is sin of 1 radian.)

