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Goals

Approximating functions by a
Taylor Series

Taylor Remainder Estimate
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Power Series Terms

Last Time We Learned: A function f(x) given by
power series centered at a equals
∑∞

n=0
fn(a)

n! (x − a)n inside its radius of
convergence.

Suppose we don’t know whether f(x) is given
by a power series, how can we interpret this
∑∞

n=0
fn(a)

n! (x − a)n?
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Tangent Line Approximation

Near a

f(x) ≈ f(a) + f 1(a)(x − a) ≡ P1(x, a).

Example: Approximate
√
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Quadratic Approximation

Even better, near a

f(x) ≈ f(a) + f 1(a)(x − a) +
1

2
f 2(a)(x − a)2 ≡ P2(x, a).

Example: Better approximate
√

1.01.
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Quantitative Estimate

Given f(x) let the nth Taylor Expansion be
TN(x) =

∑N

n=0
fn(a)

n!
(x − a)n, and let the Nth Remainder be

RN (x) = f(x) − TN(x).

Theorem: Suppose |fn+1(x)| ≤ M for every x in [a, x] if
x > a (or [x, a] if x < a), then

|RN (x)| ≤ M
|x − a|N+1

(N + 1)!
.

At least how good was our approximation of
√

1.01?
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The Next Term

x
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The Usual Demand

Example: How many terms of the MacClaurin series of
sin(x) do you need to estimate sin(1) to with in 0.001?
Compute sin(1) to with in 0.001. (This is sin of 1 radian.)
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