# LECTURE OUTLINE Space Curves 

Professor Leibon

Math 8

Nov. 5, 2004

Goals

# Vector functions 

 space curves derivativesintegrals Length

## Position

We describe a particle's position at time $t$ via a vector valued function

$$
\vec{r}(t)=x(t) \vec{i}+y(t) \vec{j}+z(t) \vec{k}=<x(t), y(t), z(t)>
$$

with $x(t), y(t)$, and $z(t)$ differentiable functions of $t$ for (sometimes we specify for $t$ is in a given interval $[a, b])$.

Example: Describe the space curve traced out by a particle following $\vec{u}(t)=<2 t+3,4 t,-t+7>$.

## Another Space Curve

Describe the space curve traced out by a particle following

$$
\vec{v}(t)=<\cos (t), \sin (t), t>.
$$

This curve is called a helix.

## The Velocity Vector

$\vec{r}(t)$ 's instantaneous change at time $t$, velocity, equals

$$
\lim _{\Delta t \rightarrow 0} \frac{\vec{r}(t+\Delta t)-\vec{r}(t)}{\Delta t}=\frac{d}{d t} \vec{r}(t)
$$

2. Find the velocity at each time of particle traveling along a helix. Watch is the direction of this velocity, this is usually denoted $\hat{T}(t)$ and called the unit tangent vector.

## Integration

For $t \geq a$

$$
\vec{r}(t)=\int_{a}^{t} \frac{d}{d t} \vec{r}(t) d t+\vec{r}(a)
$$

where we integrate each component. 3. Describe the curves that share our helix's velocity vector at each time.

## Speed and Path Length

$\vec{r}(t)$ 's Speed is given by $\left|\frac{d}{d t} \vec{r}(t)\right|$. while

$$
L=\int_{a}^{b}\left|\frac{d}{d t} \vec{r}(t)\right| d t
$$

is the distance traveled while $t$ went from $a$ to $b$, in other words the curve's length.
4. Find the length of out helix for $t$ in
$[0, B]$.

## Differentiation Rules

$$
\text { 1. } \frac{d}{d t}[\vec{u}(t)+\vec{v}(t)]=\frac{d \vec{u}}{d t}(t)+\frac{d \vec{v}}{d t}(t)
$$

$$
\text { 2. } \frac{d}{d t}[c \vec{u}(t)]=c \frac{d \vec{u}}{d t}(t)
$$

$$
\text { 3. } \frac{d}{d t}[f(t) \vec{u}(t)]=f(t) \frac{d \vec{u}}{d t}(t)+\frac{d f}{d t}(t) \vec{u}
$$

$$
\text { 4. } \frac{d}{d t}[\vec{u}(t) \cdot \vec{v}(t)]=\frac{d \vec{u}}{d t}(t) \cdot \vec{v}(t)+\vec{u}(t) \cdot \frac{d \vec{v}}{d t}(t)
$$

5. $\frac{d}{d t}[\vec{u}(t) \times \vec{v}(t)]=\frac{d \vec{u}}{d t}(t) \times \vec{v}(t)+\vec{u}(t) \times \frac{d \vec{v}}{d t}(t)$
6. $\frac{d}{d t}[\vec{u}(f(t))]=\frac{d \vec{u}}{d t}(t) \frac{d f}{d t}(t)$

## Here We Go!!!

Let $\vec{v}(t)=<\cos (t), \sin (t), t>$ and let $\hat{T}(t)$ be its unit tangent vector. Show $\hat{T} \cdot \frac{d}{d t} \hat{T}=0$ Explain why this is always true.
Find $\frac{d}{d t} \hat{T}(t)$ 's direction vector for our helix, and call it $\hat{N}(t)$ the curve's normal vector.

Let $\hat{B}(t)=\hat{T}(t) \times \hat{N}(t)$, this is usually called the curve's binormal vector. Compute $\hat{B}$ and $\frac{d}{d t} \hat{B}$ for our helix. Why must $\frac{d}{d t} \hat{B}$ be a multiple of $\hat{N}$ ?
Show that $\frac{d}{d t} \hat{N}(t)=-a(t) \hat{T}+b(t) \hat{B}$, for our helix. Why is this always true?

