LECTURE OUTLINE Planes

Professor Leibon

Math 8

Nov. 3, 2004

Goals

Equations for planes

Distances between various

 objects
Planes

A plane containing a point $\vec{r}_{0}=<x_{0}, y_{0}, z_{0}>$ can be described as the positions determined by all of the vectors at \vec{r}_{0} that are perpendicular to a fixed vector, the plane's normal. In other words all the \vec{r} that satisfy

$$
\left(\vec{r}-\vec{r}_{0}\right) \cdot \vec{n}=0 .
$$

As an equation, a plane is all (x, y, z) such that

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0,
$$

where $\vec{n}=\langle a, b, c\rangle$. This is called the scalar equation of the plane. (While $a x+b y+c z=d$, is called the plane's linear equation.)

Examples

1. Find an equation of plane perpendicular to $\langle 1,2,-5\rangle$ that contains the point $(-1,0,3)$.
2. Find an equation of a plane that contains the points
$(1,1,-3),(2,3,4)$ and $(0,-7,8)$.
3. Find the point on the line $<1,1,2>t+<2,-3,4>$ that intersects the plane in part 2.
4. Find an equation of the line of intersection of the planes in parts 1 and 2.
5. Find the distance between the plane in part 1 and the point (2,1,9).
