LECTURE OUTLINE Lines

Professor Leibon

Math 8
Nov. 2, 2004

Goals

Parallelepiped Volume Lines

Review

Given vectors \vec{a} and \vec{b} we define $\vec{a} \times \vec{b}$ to be the unique vector satisfying
(1) $\vec{a} \times \vec{b}$ is orthogonal to \vec{a} and to \vec{b} (or zero).
(2) It has length equal to the area of the parallelogram determined by \vec{a} and \vec{b}.
(3) $\vec{a} \times \vec{b}$ is in the direction determined by the right hand rule going from \vec{a} to \vec{b}.

Theorem:

$$
(\vec{a} \times \vec{b})=\left|\begin{array}{lll}
\hat{i} & \hat{j} & \hat{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| .
$$

Parallelepiped Volume

The oriented volume of the parallelepiped determined by \vec{a}, \vec{b}, and \vec{c} is given by

$$
\vec{a} \cdot(\vec{b} \times \vec{c}) \equiv \operatorname{det}\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right) \equiv\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right| .
$$

$$
\text { Let } \vec{a}=\langle-1,2,5>, \vec{b}=<2,2,7>\text { and } \vec{c}=<3,2,-1>\text {. }
$$

Find the oriented volume of the parallelepiped determined by \vec{a}, \vec{b}. and \vec{c}. (The sign tells you whether the right hand rule has been respected.)

Lines

Given a point $\vec{r}_{0}=<x_{0}, y_{0}, z_{0}>$ and direction $\vec{v}=<a, b, c\rangle$, we can form a parameterized line that starts at \vec{r}_{0} and and travels in the direction \hat{v} with speed $|\vec{v}|$, via

$$
\vec{r}(t)=\vec{r}_{0}+t \vec{v}=<x_{0}+t a, y_{0}+t b, z_{0}+t c>
$$

We can implicitly describe this line by solving for t, we have

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c} .
$$

Lines: Example 1

1. Find a parameterization and an implicit description of the line parallel to the vector $<1,1,-2>$ and containing the point $(2,3,8)$.
2. Does this line ever pass through a point with y coordinate 9 ? If so find this point.

Lines: Example 2

1. Find a parameterization of the line containing the points $(1,3,2)$ and $(-3,5,7)$.
2. At what point does this line intersect the $x y$-plane?

Lines: Example 3

Find a parameterization of the line perpendicular to the directions $\vec{a}=<-1,2,5>$ and
$\vec{b}=<2,2,7>$ and going through the point $(1,2,0)$.

Lines

Given a points $\vec{r}_{0}=<x_{0}, y_{0}, z_{0}>$ and $\vec{r}_{1}=<x_{1}, y_{1}, z_{1}>$ we can form a parameterized line that starts at \vec{r}_{0} at time 0 and travels at constant speed to $\vec{r}_{1}=<x_{1}, y_{1}, z_{1}>$ arriving there at time 1 via
$\vec{r}(t)=(1-t) \vec{r}_{0}+t \vec{r}_{1}=<(1-t) x_{0}+t x_{1},(1-t) y_{0}+t y_{1},(1-t) z_{0}+t z_{1}$

Find a parameterization of the line, that start at time zero at $(1,3,2)$ and ends at time 1 at $(-3,5,7)$.

