LECTURE OUTLINE
 Maxima and Minima

Professor Leibon

Math 8
Nov. 22, 2004

Review: Critical Points

We also call a point (a, b) a critical point of f if and only if $\nabla f(a, b)=0$ or either f_{x} or f_{y} does not exist.

Fact: If f has a local maximum or minimum at (a, b) and the partial derivatives of f exist there, then $\nabla f=0$.

Example: Find the critical points of
$f(x, y)=x^{2}+y^{2}-2 x-6 y+14$. Determine whether these points are minima or maxima.

Example: Find the critical points of $f(x, y)=y^{2}-x^{2}$.
Determine whether these points are minima or maxima.

Second Derivative Test

Second Derivative Test : Suppose (a, b) is a critical point of $f(x, y)$ and that the second partial derivatives of f are continuous on a disk with center (a, b). Let

$$
D=\left|\begin{array}{cc}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=f_{x x}(a, b) f_{y y}(a, b)-\left(f_{x y}(a, b)\right)^{2}
$$

(a) If $D>0$ and $f_{x x}(a, b)>0$, then $f(a, b)$ is a local minimum.
(a) If $D>0$ and $f_{x x}(a, b)<0$, then $f(a, b)$ is a local maximum.
(c) If $D<0$, then $f(a, b)$ is not a local minimum or local maximum. (This is is called a saddle point.)

Example

Example 3: Apply the

$$
D=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|
$$

test to our previous examples.
Example 4: Find the critical points of
$f(x, y)=x^{4}+y^{4}-4 x y+1$. Determine whether these points are minima, maxima, or saddles.

Extreme Values

Extreme Value Theorem: If f is a continuous on a closed, bounded set D in \mathbf{R}^{2}, then f attains an absolute maximum value $f\left(x_{1}, y_{1}\right)$ and an absolute minimum value $f\left(x_{2}, y_{2}\right)$ at some points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in D.
To find the absolute maximum and minimum values of a continuous function on a closed, bounded set D :

1. Find the value of f at each of the critical points of f in D.
2. Find the extreme values of f on the boundary of D.
3. The largest of the values from steps 1 and 2 is the absolute maximum while the smallest is the absolute minimum.

Example

Example 5: Find the absolute maximum of
$f(x, y)=x^{2}+y^{2}+x^{2} y+4$ of the set
$D=\{(x, y)| | x|\leq 1,|y| \leq 1\}$.
Example 2: Find the dimensions of the largest volume rectangular box in the first octant with three faces in the coordinate planes and one vertex in the plane
$x+2 y+3 z=6$.

The Wave Equation

The wave equation is

$$
\frac{\partial^{2} f}{\partial t^{2}}=a^{2} \frac{\partial^{2} f}{\partial x^{2}}
$$

Show that $f(x+a t)+g(x-a t)$ solves the wave equation.
Suppose you lift a sting in to the position given by $e^{-x^{2}}$ and let it go. Explore what happens.

