LECTURE OUTLINE
 Cross Product

Professor Leibon

Math 8

Nov. 1, 2004

Goals

Cross Product

 Parallelogram Area Parallelepiped Volume
Review

Let $\vec{a}=<-1,2,5>$ and $\vec{b}=\langle 2,2,7>$. Find a length 3 vector such that its component in the \vec{b} is 2 . What is your vectors component in the \vec{a} direction? Is it possible to find a length 3 vector such that its component in the \vec{b} is 2 which is perpendicular to \vec{a} ?

Cross Product

Given vectors \vec{a} and \vec{b} we define $\vec{a} \times \vec{b}$ to be the unique vector satisfying
(1) $\vec{a} \times \vec{b}$ is orthogonal to \vec{a} and to \vec{b} (or zero).
(2) It has length equal to the area of the parallelogram determined by \vec{a} and \vec{b}.
(3) $\vec{a} \times \vec{b}$ is in the direction determined by the right hand rule going from \vec{a} to \vec{b}.

Example: Let $\vec{a}=<-7,0,0>$ and $\vec{b}=<0,0,2>$ and find $\vec{a} \times \vec{b}$.

Main Theorem

Let $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$, then $\vec{a} \times \vec{b}$ equals

$$
\left(a_{2} b_{3}-a_{3} b_{2}\right) \hat{i}-\left(a_{1} b_{3}-a_{3} b_{1}\right) \hat{j}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \hat{k}
$$

Example: Let $\vec{a}=<-1,2,5>$ and $\vec{b}=<2,2,7>$, find $\vec{a} \times \vec{b}$. Find the area of the parallelogram determined by \vec{a} and \vec{b}.

Prove property (1).

Basic Properties

1. $\vec{a} \times \vec{b}=-\vec{a} \times \vec{b}$
2. $(c \vec{a}) \times \vec{b}=c(\vec{a} \times \vec{b})=\vec{a} \times(c \vec{b})$
3. $(\vec{a}+\vec{b}) \times \vec{c}=\vec{a} \times \vec{c}+\vec{b} \times \vec{c}$
4. $\vec{c} \times(\vec{a}+\vec{b})=\vec{c} \times \vec{a}+\vec{c} \times \vec{b}$
5. $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$

Example: Let $\vec{a}=\langle-1,2,5>$ and $\vec{b}=\langle 2,2,7\rangle$,
$\vec{c}=<1,0,0\rangle$ and find $(\vec{a}+3 \vec{c}+7 \vec{b}) \times(\vec{c}+3 \vec{b})$.

Warm Up: Parallelogram Area in the plane

The oriented area A of the parallelogram determined by $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}$ and $\vec{b}=b_{1} \hat{i}+b_{2} \hat{j}$ satisfies

$$
\begin{gathered}
A^{2}=(\text { base })^{2}(\text { height })^{2}=|\vec{a}|^{2}|\vec{b}|^{2}(\sin (\theta))^{2} \\
=\left(a_{1}^{2}+a_{2}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}\right)\left(1-\cos (\theta)^{2}\right)=\left(\left(a_{1}^{2}+a_{2}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}\right)-\left(a_{1} b_{1}+a_{2} b_{2}\right)^{2}\right) \\
=\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}=|\vec{a} \times \vec{b}|^{2}
\end{gathered}
$$

Hence the square root, the oriented area, is given by

$$
a_{1} b_{2}-a_{2} b_{1} \equiv \operatorname{det}\left(\begin{array}{cc}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right) \equiv\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|
$$

(The last line is "absolutely" the stupidest notation ever introduced. Why?)

Using this notation

$$
\vec{a} \times \vec{b}=\left|\begin{array}{cc}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \vec{i}-\left|\begin{array}{cc}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \vec{j}+\left|\begin{array}{cc}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \vec{k}
$$

Let $\vec{b}=<2,2,7>$ and $\vec{c}=<3,2,-1>$. Find $\vec{b} \times \vec{c}$.

Parallelepiped Volume

The oriented volume of the parallelepiped determined by \vec{a}, \vec{b}, and \vec{c} is given by

$$
\begin{gathered}
\vec{a} \cdot(\vec{b} \times \vec{c}) \equiv \operatorname{det}\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right) \equiv\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right| . \\
(\vec{b} \times \vec{c})=\left|\begin{array}{lll}
\hat{i} & \hat{j} & \hat{k} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right| .
\end{gathered}
$$

Parallelepiped Volume

Let $\vec{a}=\langle-1,2,5\rangle, \vec{b}=\langle 2,2,7>$ and $\vec{c}=\langle 3,2,-1\rangle$.
Find the oriented volume of the parallelepiped determined by \vec{a}, \vec{b}. and \vec{c}. (The sign tells you whether the right hand rule has been respected.)

