LECTURE OUTLINE The Gradient and Extreme Points

Professor Leibon

Math 8

Nov. 19, 2004

Let θ be the angle between \hat{u} and ∇f. Notice, we have

$$
D_{u} f=|\nabla f| \cos (\theta)
$$

Consequences: f increases the fastest in the direction of $\nabla f, f$ decreases fastest the direction of $-\nabla f$, and f does not change as we head in a direction perpendicular to ∇f.

Contour...

Consequences

Example: Assume we are at the point (2,1). What direction should we head in order to increase $f(x, y)=y e^{x^{2}}$ at the fastest rate? What direction should we head to follow a level curve?

Level Surfaces

In three dimensions, ∇f gives a vector perpendicular to a level surface.

Example: Describe the level surface of the function $f(x, y, z)=\frac{x^{2}}{4}+\frac{y^{2}}{9}+z^{2}$ corresponding to $f(x, y, z)=1$.
Find the tangent plane of this surface at the point (a, b, c).

Maxima and Minima

A function of two variables has a local maximum at (a, b) if $f(x, y) \leq f(a, b)$ when (x, y) is near (a, b). The number $f(a, b)$ is called a local maximum value.
A function of two variables has a local minimum at (a, b) if $f(x, y) \geq f(a, b)$ when (x, y) is near (a, b). The number $f(a, b)$ is called a local minimum value.

If f has a local maximum or minimum at (a, b) and the partial derivatives of f exist there, then $\nabla f=0$ (the 0 vector).

Critical Points

If $\nabla f(a, b)=0$, then we call (a, b) a critical point of f.
Example: Find the critical points of
$f(x, y)=x^{2}+y^{2}-2 x-6 y+14$. Determine whether these points are minima or maxima.

Example: Find the critical points of $f(x, y)=y^{2}-x^{2}$.
Determine whether these points are minima or maxima.

Second Derivative Test

Second Derivative Test : Suppose (a, b) is a critical point of $f(x, y)$ and that the second partial derivatives of f are continuous on a disk with center (a, b). Let

$$
D=\left|\begin{array}{cc}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=f_{x x}(a, b) f_{y y}(a, b)-\left(f_{x y}(a, b)\right)^{2}
$$

(a) If $D>0$ and $f_{x x}(a, b)>0$, then $f(a, b)$ is a local minimum.
(a) If $D>0$ and $f_{x x}(a, b)<0$, then $f(a, b)$ is a local maximum.
(c) If $D<0$, then $f(a, b)$ is not a local minimum or local maximum. (This is is called a saddle point.)

Example

Example 1: Apply the

$$
D=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|
$$

test to our previous examples.
Example 2: Find the critical points of
$f(x, y)=x^{4}+y^{4}-4 x y+1$. Determine whether these points are minima, maxima, or saddles.

