LECTURE OUTLINE The Gradient and Extreme Points

Professor Leibon

Math 8

Nov. 19, 2004

Last Time

Let θ be the angle between \hat{u} and ∇f . Notice, we have

$$D_u f = |\nabla f| \cos(\theta)$$

Consequences: *f* increases the fastest in the direction of ∇f , *f* decreases fastest the direction of $-\nabla f$, and *f* does not change as we head in a direction perpendicular to ∇f .

Contour...

Consequences

Example: Assume we are at the point (2, 1). What direction should we head in order to increase $f(x, y) = ye^{x^2}$ at the fastest rate? What direction should we head to follow a level curve?

Level Surfaces

In three dimensions, ∇f gives a vector perpendicular to a *level surface*.

Example: Describe the level surface of the function $f(x, y, z) = \frac{x^2}{4} + \frac{y^2}{9} + z^2$ corresponding to f(x, y, z) = 1. Find the tangent plane of this surface at the point (a, b, c).

Maxima and Minima

A function of two variables has a *local maximum* at (a, b) if $f(x, y) \le f(a, b)$ when (x, y) is near (a, b). The number f(a, b) is called a *local maximum value*.

A function of two variables has a *local minimum* at (a, b) if $f(x, y) \ge f(a, b)$ when (x, y) is near (a, b). The number f(a, b) is called a *local minimum value*.

If *f* has a local maximum or minimum at (a, b) and the partial derivatives of *f* exist there, then $\nabla f = 0$ (the 0 vector).

Critical Points

If $\nabla f(a,b) = 0$, then we call (a,b) a critical point of f.

Example: Find the critical points of $f(x,y) = x^2 + y^2 - 2x - 6y + 14$. Determine whether these points are minima or maxima.

Example: Find the critical points of $f(x, y) = y^2 - x^2$. Determine whether these points are minima or maxima.

Second Derivative Test

1

Second Derivative Test : Suppose (a, b) is a critical point of f(x, y) and that the second partial derivatives of f are continuous on a disk with center (a, b). Let

$$D = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix} = f_{xx}(a,b)f_{yy}(a,b) - (f_{xy}(a,b))^2$$

(a) If D > 0 and $f_{xx}(a, b) > 0$, then f(a, b) is a local minimum.

(a) If D > 0 and $f_{xx}(a, b) < 0$, then f(a, b) is a local maximum.

(c) If D < 0, then f(a, b) is not a local minimum or local maximum. (This is called a *saddle point*.)

Example

Example 1: Apply the

$$D = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix}$$

test to our previous examples.

Example 2: Find the critical points of $f(x,y) = x^4 + y^4 - 4xy + 1$. Determine whether these points are minima, maxima, or saddles.