LECTURE OUTLINE Directional Derivative

Professor Leibon

Math 8

Nov. 17, 2004

Goals

Directional Derivative Level Surfaces

Review

Let $\nabla f=<\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}>$ (we called this the gradient) and $\vec{x}=<x_{1}, \ldots, x_{n}>$ with each x_{i} a function of the variables $t_{1} \ldots t_{m}$, then we have the chain rule

$$
\frac{\partial f}{\partial t_{i}}=\nabla f \cdot \frac{\partial \vec{x}}{\partial t_{i}} .
$$

Example: An elliptical balloon described by $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ has volume given by $\frac{4 \pi}{3} a b c$. Suppose this balloon is being blown up so that when $(a, b, c)=(2,4,5)$ we have that $\frac{d}{d t}(a, b, c)=(.1, .2, .25)$. At what rate is the balloon's volume increasing when $(a, b, c)=(2,4,5)$?

Directional Derivative: Two dimensions

Given a direction $\hat{u}=a \hat{i}+b \hat{j}$, the directional derivative of $f(x, y)$ at $\left(x_{0}, y_{0}\right)$ in the direction \hat{u} is

$$
\frac{d f\left(x_{0}+a t, y_{0}+b t\right)}{d t}=\nabla f\left(x_{0}, y_{0}\right) \cdot<a, b>
$$

Example: Suppose the gradient of f at $(2,3)$ is $<-1,5\rangle$. At what rate does f change as one heads in the direction $\frac{1}{\sqrt{2}} \hat{i}+\frac{1}{\sqrt{2}} \hat{j}$ starting at $(2,3)$?

The Directional Derivative Function

Given a direction $\hat{u}=a \hat{i}+b \hat{j}$ the directional derivative function associated to $f(x, y)$ is
$D_{u} f(x, y)=\frac{d f(x+a t, y+b t)}{d t}=\nabla f(x, y) \cdot\langle a, b\rangle$.
Example: Find the directional derivative function associated to $f(x, y)=y e^{x^{2}}$ in the direction $\frac{1}{2} \hat{i}-$ $\frac{\sqrt{3}}{2} \hat{j}$.

Directional Derivative: Higher Dimensions

Given a direction \hat{u} the directional derivative function associated to f in the direction \hat{u} is

$$
D_{u} f=\nabla f \cdot \vec{u} .
$$

Example: Find the directional derivative function associated to $f(x, y, z)=x^{2}+y^{2}+z^{2}$ in the direction \hat{k}.

Using the dot product

Let θ be the angle between \hat{u} and ∇f. Notice, we have

$$
D_{u} f=|\nabla f| \cos (\theta)
$$

Consequences: f increases the fastest in the direction of $\nabla f, f$ decreases fastest the direction of $-\nabla f$, and f does not change as we head in a direction perpendicular to ∇f.

Contour...

