LECTURE OUTLINE Directional Derivative

Professor Leibon

Math 8

Nov. 17, 2004

Directional Derivative Level Surfaces

Review

Let $\nabla f = \langle \frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n} \rangle$ (we called this the *gradient*) and $\vec{x} = \langle x_1, \dots, x_n \rangle$ with each x_i a function of the variables $t_1 \dots t_m$, then we have the *chain rule*

$$\frac{\partial f}{\partial t_i} = \nabla f \cdot \frac{\partial \vec{x}}{\partial t_i}.$$

Example: An elliptical balloon described by $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ has volume given by $\frac{4\pi}{3}abc$. Suppose this balloon is being blown up so that when (a, b, c) = (2, 4, 5) we have that $\frac{d}{dt}(a, b, c) = (.1, .2, .25)$. At what rate is the balloon's volume increasing when (a, b, c) = (2, 4, 5)?

Directional Derivative: Two dimensions

Given a direction $\hat{u} = a\hat{i} + b\hat{j}$, the *directional derivative* of f(x, y) at (x_0, y_0) in the direction \hat{u} is

$$\frac{df(x_0 + at, y_0 + bt)}{dt} = \nabla f(x_0, y_0) \cdot \langle a, b \rangle.$$

Example: Suppose the gradient of f at (2,3) is <-1,5>. At what rate does f change as one heads in the direction $\frac{1}{\sqrt{2}}\hat{i} + \frac{1}{\sqrt{2}}\hat{j}$ starting at (2,3)?

The Directional Derivative Function

Given a direction $\hat{u} = a\hat{i} + b\hat{j}$ the directional derivative function associated to f(x, y) is

$$D_u f(x, y) = \frac{df(x + at, y + bt)}{dt} = \nabla f(x, y) \cdot \langle a, b \rangle$$

Example: Find the directional derivative function associated to $f(x, y) = ye^{x^2}$ in the direction $\frac{1}{2}\hat{i} - \frac{\sqrt{3}}{2}\hat{j}$.

Directional Derivative: Higher Dimensions

Given a direction \hat{u} the *directional derivative function* associated to f in the direction \hat{u} is

$$D_u f = \nabla f \cdot \vec{u}.$$

Example: Find the directional derivative function associated to $f(x, y, z) = x^2 + y^2 + z^2$ in the direction \hat{k} .

Using the dot product

Let θ be the angle between \hat{u} and ∇f . Notice, we have

$$D_u f = |\nabla f| \cos(\theta)$$

Consequences: *f* increases the fastest in the direction of ∇f , *f* decreases fastest the direction of $-\nabla f$, and *f* does not change as we head in a direction perpendicular to ∇f .

Contour...