LECTURE OUTLINE Chain Rule

Professor Leibon

Math 8

Nov. 15, 2004

Chain Rule Gradient Tree Diagrams

Review

We can approximate our function f(x, y) with the plane

$$f(x,y) \approx f(a,b) + \frac{\partial f}{\partial x}(a,b)(x-a) + \frac{\partial f}{\partial y}(a,b)(y-b).$$

As such, near (a, b) we have $\Delta z = f(x, y) - f(a, b)$ is approximately

$$\frac{\partial f}{\partial x}(a,b)(x-a) + \frac{\partial f}{\partial y}(a,b)(y-b) = \frac{\partial f}{\partial x}\Delta x + \frac{\partial f}{\partial y}\Delta y,$$

and it can be useful to think using the differential

$$dz = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy.$$

A Baby Step Towards the General Chain Rule

Recall $dy = \frac{dy}{dx} dx$. From this we have the chain rule

$$\frac{dy}{dt} = \frac{dy}{dx}\frac{dx}{dt}.$$

In two dimensions, using our above differential $dz = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy$ and the same reasoning we have $\frac{df}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}.$

Ex. Let $f(x, y) = x^2y + y^3$, $x(t) = \sin(t)$, and $y(t) = e^t$. Find $\frac{d}{dt} (e^t(\sin(t))^2 + e^{3t})$ in the old way and using the chain rule.

The Gradient

Let
$$\vec{r}(t) = \langle x(t), y(t) \rangle$$
 and let
 $\nabla f = \langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \rangle$

We call ∇f the gradient of f. The chain rule becomes

$$\frac{df}{dt} = \nabla f \cdot \frac{d\vec{r}}{dt}$$

Example: Let $\vec{r}(3) = (1, -1)$, $\frac{d\vec{r}}{dt}(3) = (1, 2)$, and $\nabla f(1, -1) = (2, 5)$. Compute $\frac{d}{dt}(f(\vec{r}(t)))$ at t = 3.

The General Chain Rule

Suppose *f* is a differentiable function of the *n* variables x_1, \ldots, x_n . Let

$$\nabla f = < \frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n} > .$$

Let $\vec{x} = \langle x_1, \ldots, x_n \rangle$. Suppose each x_j is a differentiable function of the *m* variables t_1, \ldots, t_m . Then *f* can be viewed as a function of t_1, \ldots, t_m and

$$\frac{\partial f}{\partial t_i} = \nabla f \cdot \frac{\partial \vec{x}}{\partial t_i}.$$

Example: Let $\vec{x}(3) = (1, -1, 2)$, $\frac{d\vec{x}}{dt}(3) = (1, 2, 0)$, and $\nabla f(1, -1, 2) = (2, 5, 3)$. Compute $\frac{d}{dt}(f(\vec{x}(t)))$ at t = 3

Tree Diagrams and the Chain Rule

The chain rule:

$$\frac{\partial f}{\partial t_i} = \nabla f \cdot \frac{\partial \vec{x}}{\partial t_i}.$$

Example: Let $f(x, y, z) = z^2y + y^2x^2$, x(t, s) = st, $y(t, s) = s^2e^t$, z(t, s) = t. Find $\frac{\partial f}{\partial t}$ and $\frac{\partial f}{\partial s}$ in the old way and using the chain rule. Express this using a tree diagram.