LECTURE OUTLINE
 Chain Rule

Professor Leibon

Math 8

Nov. 15, 2004

Goals

Chain Rule Gradient

Tree Diagrams

Review

We can approximate our function $f(x, y)$ with the plane

$$
f(x, y) \approx f(a, b)+\frac{\partial f}{\partial x}(a, b)(x-a)+\frac{\partial f}{\partial y}(a, b)(y-b) .
$$

As such, near (a, b) we have $\Delta z=f(x, y)-f(a, b)$ is approximately

$$
\frac{\partial f}{\partial x}(a, b)(x-a)+\frac{\partial f}{\partial y}(a, b)(y-b)=\frac{\partial f}{\partial x} \Delta x+\frac{\partial f}{\partial y} \Delta y,
$$

and it can be useful to think using the differential

$$
d z=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y .
$$

A Baby Step Towards the General Chain Rule

Recall $d y=\frac{d y}{d x} d x$. From this we have the chain rule

$$
\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t} .
$$

In two dimensions, using our above differential $d z=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y$ and the same reasoning we have

$$
\frac{d f}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t} .
$$

Ex. Let $f(x, y)=x^{2} y+y^{3}, x(t)=\sin (t)$, and $y(t)=e^{t}$. Find $\frac{d}{d t}\left(e^{t}(\sin (t))^{2}+e^{3 t}\right)$ in the old way and using the chain rule.

The Gradient

Let $\vec{r}(t)=<x(t), y(t)>$ and let

$$
\nabla f=<\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}>
$$

We call ∇f the gradient of f. The chain rule becomes

$$
\frac{d f}{d t}=\nabla f \cdot \frac{d \vec{r}}{d t}
$$

Example: Let $\vec{r}(3)=(1,-1), \frac{d \vec{r}}{d t}(3)=(1,2)$, and $\nabla f(1,-1)=$
$(2,5)$. Compute $\frac{d}{d t}(f(\vec{r}(t))$ at $t=3$.

The General Chain Rule

Suppose f is a differentiable function of the n variables x_{1}, \ldots, x_{n}. Let

$$
\nabla f=<\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}>
$$

Let $\vec{x}=<x_{1}, \ldots, x_{n}>$. Suppose each x_{j} is a differentiable function of the m variables t_{1}, \ldots, t_{m}. Then f can be viewed as a function of t_{1}, \ldots, t_{m} and

$$
\frac{\partial f}{\partial t_{i}}=\nabla f \cdot \frac{\partial \vec{x}}{\partial t_{i}} .
$$

Example: Let $\vec{x}(3)=(1,-1,2), \frac{d \vec{x}}{d t}(3)=(1,2,0)$, and
$\nabla f(1,-1,2)=(2,5,3)$. Compute $\frac{d}{d t}(f(\vec{x}(t))$ at $t=3$.

Tree Diagrams and the Chain Rule

The chain rule:

$$
\frac{\partial f}{\partial t_{i}}=\nabla f \cdot \frac{\partial \vec{x}}{\partial t_{i}} .
$$

Example: Let $f(x, y, z)=z^{2} y+y^{2} x^{2}, x(t, s)=s t$, $y(t, s)=s^{2} e^{t}, z(t, s)=t$. Find $\frac{\partial f}{\partial t}$ and $\frac{\partial f}{\partial s}$ in the old way and using the chain rule. Express this using a tree diagram.

