LECTURE OUTLINE Tangent Planes

Professor Leibon

Math 8

Nov. 15, 2004

Tangent Planes Linear Approximation

Example: $f(x, y) = x^2 - y^2$ at (0, 0, 0).

Example: $f(x, y) = x^2 - y^2$ at (0, 0, 0). Zoom in towards (0, 0, 0)....

Example: $f(x, y) = x^2 - y^2$ at (0, 0, 0). Zoom in towards (0, 0, 0) and we see a plane, the tangent plane.

Example: $f(x, y) = x^2 - y^2$ at (0, 0, 0). Zoom in towards (0, 0, 0) and we see a plane, the tangent plane.

Example: $f(x, y) = x^2 - y^2$ near (0, 0, 0).

Example: $f(x, y) = x^2 - y^2$ near (0, 0, 0).

Provided a tangent plane exist, to find it we need two vectors. Argue that $< 1, 0, \frac{\partial f}{\partial x}(a, b) >$ and $< 0, 1, \frac{\partial f}{\partial y}(a, b) >$ should be in the tangent plane at (a, b, f(a, b)). From this the plane's normal is

$$\vec{n} = \langle -\frac{\partial f}{\partial x}(a,b) - \frac{\partial f}{\partial y}(a,b), 1 \rangle$$
.

Example: Find the tangent plane of $f(x, y) = x^2 - y^2$ at (2, 1, 3).

Linear Approximation

We can approximate our function with this plane, namely

$$f(x,y) \approx f(a,b) + \frac{\partial f}{\partial x}(a,b)(x-a) + \frac{\partial f}{\partial y}(a,b)(y-b).$$

Example: Approximate the value of $f(x, y) = x^2 - y^2$ at (2.05, 1.03). How close is it the true value?

A Cruel and UNUSUAL example

The tangent plane may fail to exist if $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ are **not** continuous. In other words, be careful when a denominator takes on a zero, or when function can't make up its mind about a certain value.

Ex. Let
$$f(x, y) = \frac{xy}{\sqrt{x^2 + y^2}}$$
. Find f_x and f_y . Are they continuos?

Let $f(x, y) = \frac{xy}{\sqrt{x^2+y^2}}$. Zoom in towards the (0, 0, 0), and,...

Let $f(x, y) = \frac{xy}{\sqrt{x^2+y^2}}$. Zoom in towards the (0, 0, 0), and nothing happens!

Let $f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}$ and zoom in towards (0,0,0) on the graph of $\frac{\partial f}{\partial x}$...

LECTURE OUTLINE Tangent Planes - p.14/1

Let $f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}$ and zoom in towards (0,0,0) on the graph of $\frac{\partial f}{\partial x}$...

Let $f(x, y) = \frac{xy}{\sqrt{x^2 + y^2}}$ and zoom in towards (0, 0, 0) on the graph of $\frac{\partial f}{\partial x}$ and EEEEKKKK!!!!!!

The Differential

We can approximate our function with this plane. As such, near (a, b) we have $\Delta z = f(x, y) - f(a, b)$ is approximately

$$\frac{\partial f}{\partial x}(a,b)(x-a) + \frac{\partial f}{\partial y}(a,b)(y-b) = \frac{\partial f}{\partial x}\Delta x + \frac{\partial f}{\partial y}\Delta y.$$

It can be useful to think using the differential

$$dz = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy.$$

Example: Find the differential of $f(x, y) = x^2 - y^2$ at (2, 1, 3).

Limits

A function of two variables is called continuous at (a, b) if

$$\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b).$$

We say f is continuous in D if it is continuous at each point of D.

Example: Show $f(x, y) = \frac{xy}{\sqrt{x^2 + y^2}}$ is continuos at zero, but that f_x is not.