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Tangent Planes
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Goals

Tangent Planes
Linear Approximation



Tangent Planes

Example: f(z,y) = z* — y* at (0,0, 0).
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Tangent Plane
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f(z,y) =2* —y* at (0,0

(0,0,0)....

Example
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Tangent Plane

Zoom in towards

0).

?

— 42 at (0,0

f(z,y) =2
(0,0,0) and we see a plane, the tangent plane.

Example
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Tangent Plane

Example: f(z,y) = z* — y* at (0,0,0). Zoom in towards
(0,0,0) and we see a plane, the tangent plane.

Example: f(z,y) = z* — y* near (0,0, 0).
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(0,0,0).
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Tangent Plane

f(ﬂ?,y):I‘Q—y

Example



Tangent Plane

Provided a tangent plane exist, to find it we need two
vectors. Argue that < 1,0, %L (a,b) > and < 0, 1, g—g(a, b) >
should be in the tangent plane at (a, b, f(a,b)). From this
the plane’s normal is

L of o
: - — - - 1 L]
n =< 5 (a,b) 9y (a,b),1 >
Example: Find the tangent plane of f(x,y) = z° — ¢ at

(2,1,3).



Linear Approximation

We can approximate our function with this plane, namely

of of

f(wy) ~ fla,b) + 5 -(a, b)(w —a) + 5 -(a, ){y = b).

Example: Approximate the value of f(z,y) = z* — y* at

(2.05,1.03). How close is it the true value?



A Cruel and UNUSUAL example

The tangent plane may fail to exist if 22, 9L are not

Yy
continuous. In other words, be careful when a denominator
takes on a zero, or when function can’t make up its mind

about a certain value.

Ex. Let f(x,y) = ﬁ Find f, and f,. Are they

continuos?



The Non-Tangent Plane

Let f(x,y) = \/;TyTyz Zoom in towards the (0,0,0)...
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The Non-Tangent Plane

Let f(x,y) = ——=—. Zoom in towards the (0,0, 0), and,...
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The Non-Tangent Plane

L =——_.7 in towards the (0,0,0), and
et f(z,y) T oom in towar e (0,0,0)
nothing happens!




The Non-Tangent Plane

Let f(x,y) = \/nyTya and zoom in towards (0,0, 0) on the

o
graph of 2L...




The Non-Tangent Plane

Let f(z,y) = ——~— and zoom in towards (0,0,0) on the

\/ T2+y

o
graph of 2L...




The Non-Tangent Plane

Let f(x,y) =

LY

\/ T2+y

- and zoom in towards (0,0, 0) on the



The Diftterential

We can approximate our function with this plane. As such,
near (a,b) we have Az = f(x,y) — f(a,b) is approximately

0 0 0 0
Lane-a+ Lanw-o-FLact Loy

It can be useful to think using the differential

_of of
dz = 8xdx+ aydy.

Example: Find the differential of f(x,y) = «* — y* at (2,1, 3).



Limits

A function of two variables is called continuous at (a, b) if

Zim(w,y)ﬁ(a,b)f(xv y) — f(av b)

We say f is continuous in D if it is continuous at each point
of D.

Example: Show f(z,y) = —— is continuos at zero, but

x2—|—y2
that f, Is not.
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