LECTURE OUTLINE Partial Derivatives

Professor Leibon

Math 8

Nov. 12, 2004

Goals

Partial Derivatives

$\frac{\partial f}{\partial x}(x, y)$
 Partial Differential Equations Tangent Planes

Review: Graph

Example: $f(x, y)=\cos (x y) e^{\frac{-x^{2}-y^{2}}{10}}$ with domain
$-5 \leq x \leq 5$ and $-5 \leq y \leq 5$.

Review: Contour Plot

Example: $f(x, y)=\cos (x y) e^{\frac{-x^{2}-y^{2}}{10}}$ with domain
$-5 \leq x \leq 5$ and $-5 \leq y \leq 5$.

Partial Derivatives

$\frac{\partial f}{\partial x}(x, y)$ means take the derivative in x viewing y as constant, in other words,

$$
\frac{\partial f}{\partial x}(x, y)=f_{x}(x, y)=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} .
$$

Ex: Find f_{x} and f_{y} when $\frac{x y}{\sqrt{x^{2}+y^{2}}}$.

Higher Derivatives

Let $f(x, y)=x^{3}-y^{3}$. Find $f_{x x}$ and $f_{y y}$.
A partial differential equation (PDE) is an equation like this:

$$
f_{x x}+f_{y y}=0
$$

This is called Laplace's Equation. We try and find solutions to a PDE, namely functions that solve the given equation.

Find a solution to Laplace's equation.

Time

We can also view a variable as indexing a family of functions in the other variable (often time).
$f(x, t)=\frac{e^{-\frac{x^{2}}{4 t}}}{\sqrt{4 \pi t}}$

Another PDE

$$
f(x, t)=\frac{e^{-\frac{x^{2}}{4 t}}}{\sqrt{4 \pi t}}
$$

Ex: Confirm $f_{t}=f_{x x}$, the heat equation.

Tangent Planes

Example: $f(x, y)=x^{2}-y^{2}$ at $(0,0,0)$.

Tangent Plane

Example: $f(x, y)=x^{2}-y^{2}$ at $(0,0,0)$. Zoom in towards $(0,0,0) \ldots$

Tangent Plane

Example: $f(x, y)=x^{2}-y^{2}$ at $(0,0,0)$. Zoom in towards $(0,0,0)$ and we see a plane, the tangent plane.

Tangent Plane

In other words: near $\left(x_{0}, y_{0}\right)$ we have that $f(x, y)$ looks like

$$
z=f\left(x_{0}, y_{0}\right)+\nabla f \cdot\left(x-x_{0}, y-y_{0}\right) .
$$

Example: $f(x, y)=x^{2}-y^{2}$ near $(0,0,0)$.

Tangent Plane

Example: $f(x, y)=x^{2}-y^{2}$ near $(0,0,0)$.

A Cruel and UNUSUAL example

The tangent plane may fail to exist if $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ are not continuous. In other words, be careful when a denominator takes on a zero, or when function can't make up its mind about a certain value.

Ex. Let $f(x, y)=\frac{x y}{\sqrt{x^{2}+y^{2}}}$. Find f_{x} and f_{y}. Are they continuos?

The Non-Tangent Plane

$$
\text { Let } f(x, y)=\frac{x y}{\sqrt{x^{2}+y^{2}}} \text {. Zoom in towards the }(0,0,0) \ldots
$$

The Non-Tangent Plane

$$
\text { Let } f(x, y)=\frac{x y}{\sqrt{x^{2}+y^{2}}} \text {. Zoom in towards the }(0,0,0) \text {, and, } \ldots
$$

The Non-Tangent Plane

Let $f(x, y)=\frac{x y}{\sqrt{x^{2}+y^{2}}}$. Zoom in towards the ($0,0,0$), and nothing happens!

The Non-Tangent Plane

Let $f(x, y)=\frac{x y}{\sqrt{x^{2}+y^{2}}}$ and zoom in towards $(0,0,0)$ on the graph of $\frac{\partial f}{\partial x} \ldots$

The Non-Tangent Plane

Let $f(x, y)=\frac{x y}{\sqrt{x^{2}+y^{2}}}$ and zoom in towards $(0,0,0)$ on the graph of $\frac{\partial f}{\partial x} \ldots$

The Non-Tangent Plane

Let $f(x, y)=\frac{x y}{\sqrt{x^{2}+y^{2}}}$ and zoom in towards $(0,0,0)$ on the graph of $\frac{\partial f}{\partial x}$ and EEEEEKKKK!!!!!

Limits

A function of two variables is called continuous at (a, b) if

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b) .
$$

We say f is continuous in D if it is continuous at each point of D.

Example: Show $f(x, y)=\frac{x y}{\sqrt{x^{2}+y^{2}}}$ is continuos at zero, but that f_{x} is not.

