### LECTURE OUTLINE Partial Derivatives

**Professor Leibon** 

Math 8

Nov. 12, 2004



### Partial Derivatives $\frac{\partial f}{\partial x}(x, y)$ Partial Differential Equations

**Tangent Planes** 

### Review: Graph

Example: 
$$f(x, y) = \cos(xy)e^{\frac{-x^2-y^2}{10}}$$
 with domain  $-5 \le x \le 5$  and  $-5 \le y \le 5$ .



### **Review:** Contour Plot

# **Example:** $f(x, y) = \cos(xy)e^{\frac{-x^2-y^2}{10}}$ with domain $-5 \le x \le 5$ and $-5 \le y \le 5$ .



### **Partial Derivatives**

 $\frac{\partial f}{\partial x}(x,y)$  means take the derivative in x viewing y as constant, in other words,

$$\frac{\partial f}{\partial x}(x,y) = f_x(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$

**Ex:** Find  $f_x$  and  $f_y$  when  $\frac{xy}{\sqrt{x^2+y^2}}$ .

### Higher Derivatives

Let  $f(x, y) = x^3 - y^3$ . Find  $f_{xx}$  and  $f_{yy}$ .

A partial differential equation (PDE) is an equation like this:

$$f_{xx} + f_{yy} = 0$$

This is called *Laplace's Equation*. We try and find *solutions* to a PDE, namely functions that solve the given equation.

Find a solution to Laplace's equation.

### Time

## We can also view a variable as *indexing* a family of functions in the other variable (often time). $f(x,t) = \frac{e^{-\frac{x^2}{4t}}}{\sqrt{4\pi t}}$



### Another PDE



# **Ex:** Confirm $f_t = f_{xx}$ , the heat equation.

**Example:**  $f(x, y) = x^2 - y^2$  at (0, 0, 0).



### **Example:** $f(x, y) = x^2 - y^2$ at (0, 0, 0). Zoom in towards (0, 0, 0)....



**Example:**  $f(x, y) = x^2 - y^2$  at (0, 0, 0). Zoom in towards (0, 0, 0) and we see a plane, the tangent plane.



In other words: near  $(x_0, y_0)$  we have that f(x, y) looks like

$$z = f(x_0, y_0) + \nabla f \cdot (x - x_0, y - y_0).$$

**Example:**  $f(x, y) = x^2 - y^2$  near (0, 0, 0).



**Example:**  $f(x, y) = x^2 - y^2$  near (0, 0, 0).



### A Cruel and UNUSUAL example

The tangent plane may fail to exist if  $\frac{\partial f}{\partial x}$ ,  $\frac{\partial f}{\partial y}$  are **not** continuous. In other words, be careful when a denominator takes on a zero, or when function can't make up its mind about a certain value.

**Ex.** Let 
$$f(x, y) = \frac{xy}{\sqrt{x^2 + y^2}}$$
. Find  $f_x$  and  $f_y$ . Are they continuos?



Let  $f(x, y) = \frac{xy}{\sqrt{x^2+y^2}}$ . Zoom in towards the (0, 0, 0), and,...



Let  $f(x, y) = \frac{xy}{\sqrt{x^2+y^2}}$ . Zoom in towards the (0, 0, 0), and nothing happens!



Let  $f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}$  and zoom in towards (0,0,0) on the graph of  $\frac{\partial f}{\partial x}$ ...



Let  $f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}$  and zoom in towards (0,0,0) on the graph of  $\frac{\partial f}{\partial x}$ ...



Let  $f(x, y) = \frac{xy}{\sqrt{x^2 + y^2}}$  and zoom in towards (0, 0, 0) on the graph of  $\frac{\partial f}{\partial x}$  and EEEEKKKK!!!!!!

### Limits

A function of two variables is called continuous at (a, b) if

$$lim_{(x,y)\to(a,b)}f(x,y) = f(a,b).$$

We say f is continuous in D if it is continuous at each point of D.

**Example:** Show  $f(x, y) = \frac{xy}{\sqrt{x^2 + y^2}}$  is continuos at zero, but that  $f_x$  is not.