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Goals

Partial Derivatives
∂f
∂x

(x, y)

Partial Differential Equations
Tangent Planes
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Review: Graph

Example: f(x, y) = cos(xy)e
−x
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−5 ≤ x ≤ 5 and −5 ≤ y ≤ 5.
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Review: Contour Plot

Example: f(x, y) = cos(xy)e
−x
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10 with domain
−5 ≤ x ≤ 5 and −5 ≤ y ≤ 5.
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Partial Derivatives

∂f

∂x
(x, y) means take the derivative in x viewing y as

constant, in other words,

∂f

∂x
(x, y) = fx(x, y) = lim

h→0

f(x + h, y) − f(x, y)

h
.

Ex: Find fx and fy when xy√
x2+y2

.
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Higher Derivatives

Let f(x, y) = x3 − y3. Find fxx and fyy.

A partial differential equation (PDE) is an equation like this:

fxx + fyy = 0

This is called Laplace’s Equation. We try and find solutions to a
PDE, namely functions that solve the given equation.

Find a solution to Laplace’s equation.
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Time

We can also view a variable as indexing a family of
functions in the other variable (often time).

f(x, t) = e
−

x
2

4t√
4πt
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Another PDE

f (x, t) =
e−

x2
4t

√
4πt

Ex: Confirm ft = fxx, the heat equa-
tion.
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Tangent Planes

Example: f(x, y) = x2 − y2 at (0, 0, 0).
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Tangent Plane

Example: f(x, y) = x2 − y2 at (0, 0, 0). Zoom in towards
(0, 0, 0)....
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Tangent Plane

Example: f(x, y) = x2 − y2 at (0, 0, 0). Zoom in towards
(0, 0, 0) and we see a plane, the tangent plane.
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Tangent Plane

In other words: near (x0, y0) we have that f(x, y) looks like

z = f(x0, y0) + ∇f · (x − x0, y − y0).

Example: f(x, y) = x2 − y2 near (0, 0, 0).
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Tangent Plane

Example: f(x, y) = x2 − y2 near (0, 0, 0).
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A Cruel and UNUSUAL example

The tangent plane may fail to exist if ∂f

∂x
, ∂f

∂y
are not

continuous. In other words, be careful when a denominator
takes on a zero, or when function can’t make up its mind
about a certain value.

Ex. Let f(x, y) = xy√
x2+y2

. Find fx and fy. Are they

continuos?
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The Non-Tangent Plane

Let f(x, y) = xy√
x2+y2

. Zoom in towards the (0, 0, 0)...
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The Non-Tangent Plane

Let f(x, y) = xy√
x2+y2

. Zoom in towards the (0, 0, 0), and,...
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The Non-Tangent Plane

Let f(x, y) = xy√
x2+y2

. Zoom in towards the (0, 0, 0), and

nothing happens!
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The Non-Tangent Plane

Let f(x, y) = xy√
x2+y2

and zoom in towards (0, 0, 0) on the

graph of ∂f

∂x
...
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The Non-Tangent Plane

Let f(x, y) = xy√
x2+y2

and zoom in towards (0, 0, 0) on the

graph of ∂f

∂x
...
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The Non-Tangent Plane

Let f(x, y) = xy√
x2+y2

and zoom in towards (0, 0, 0) on the

graph of ∂f

∂x
and EEEEEKKKK!!!!!
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Limits

A function of two variables is called continuous at (a, b) if

lim(x,y)→(a,b)f(x, y) = f(a, b).

We say f is continuous in D if it is continuous at each point
of D.

Example: Show f(x, y) = xy√
x2+y2

is continuos at zero, but

that fx is not.
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