Math 81. Abstract Algebra.

Homework 1. Due on Wednesday, 1/13/2010.

This problem set is intended to remind you of material from Math 71. Below are a few handy results which you may use without proof, but if they are unfamiliar, you should read the relevant material in the text.

A polynomial $f \in \mathbb{Z}[x]$ is called primitive if the gcd of its coefficients is 1 . The following two theorems are equivalent to Gauss' lemma over \mathbb{Q}.
Theorem: Let $f \in \mathbb{Z}[x]$. Then f is irreducible in $\mathbb{Z}[x]$ if and only if f is primitive in $\mathbb{Z}[x]$ and irreducible in $\mathbb{Q}[x]$.

Theorem: Let $f \in \mathbb{Z}[x]$, and suppose that $f=g h$, where $g, h \in \mathbb{Q}[x]$. Then $f=g_{0} h_{0}$ for some $g_{0}, h_{0} \in \mathbb{Z}[x]$ with $\operatorname{deg}(g)=\operatorname{deg}\left(g_{0}\right)$ and $\operatorname{deg}(h)=\operatorname{deg}\left(h_{0}\right)$. In particular g_{0} and h_{0} are rational scalar multiples of g and h respectively.

1. Show that there exist ring homomorphisms $\mathbb{Z}_{m} \rightarrow \mathbb{Z}_{n}$ if and only if $n \mid m$. (We assume that ring homomorphisms take the multiplicative identity to the multiplicative identity.) Show that all such homomorphisms must be surjective.
2. For each of the ideals I listed below, determine whether the ideal I is prime, maximal, or neither in each of $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$ by examining the appropriate quotient ring. If the quotient is not an integral domain, find zero divisors. If the quotient is not a field, then I is not maximal, so find a maximal ideal M with $I \nsubseteq M$.
(a) $I=\left(x^{3}+2\right)$
(b) $I=\left(5, x^{3}+2\right)$
(c) $I=\left(7, x^{3}+2\right)$
3. Consider the ring $\mathbb{Z}[x]$.
(a) Which (if any) of $\left(x^{3}+2, x^{3}+9\right)$ or $\left(x^{3}+2, x^{3}+7\right)$ are maximal ideals?
(b) Find infinitely many maximal ideals containing $\left(x^{3}+x^{2}\right)$.
4. Let f be a nonconstant polynomial in $\mathbb{Q}[x]$. Show that there are only finitely many maximal ideals in $\mathbb{Q}[x]$ containing (f).
5. Proof or counterexample: Let P be a nonzero prime ideal in $\mathbb{Z}[x]$, and I an ideal with $P \subseteq I \varsubsetneqq \mathbb{Z}[x]$. Then I is a prime ideal.
