Math 74 Final

1 Hyperbolic Geometry

- 1. Prove that a set consisting of two distinct horocirles and a geodesic which are all pairwise tangent is unique up to isometry and compute a finite length which arises naturally in this configuration.
- 2. Suppose you are given two geodesics γ_1 and γ_2 which do not intersect and are not tangent. Prove that there is a unique geodesic λ intersecting γ_1 at x and γ_2 at y with $d(x, y) = d(\gamma_1, \gamma_2)$. Furthermore prove that λ is the unique geodesic simultaneously perpendicular to γ_1 and γ_2 (think banana!).
- 3. Let Γ be a subgroup of $Isom(H^2)$ which acts in a deck like way on H^2 .
 - (a) Prove Γ must have no elliptic elements or reflections.
 - (b) Prove that if two non-identity elements of Γ commute then they have the same fixed points.
 - (c) Prove that if Γ is commutative then it is conjugate to a group generated by either a^2z , $-a^2\bar{z}$ or z + a (viewed in the upper-half plane model) where a is a real non-zero number. Geometrically describe a commutative Γ 's action on H^2 .
 - (d) Prove that any commutative Γ must have an orbit space homeomorphic to the infinite cylinder or the infinite Mobius strip.

2 Geometrization: Uniqueness

In class we saw that every compact connect surface could be made an G-surface. The goal of the following problem is to prove that the G associated to a given surface is unique. Throughout this problem all compact connected surfaces other than the sphere (S^2) , projective plane (P^2) , torus (T^2) and Klein bottle (K) will be denoted as M.

- 1. (a) Prove that any E^2 or H^2 -surface must have a non-compact universal cover.
 - (b) Prove that S^2 and P^2 cannot be made into an E^2 or H^2 -surface.

- 2. (a) Prove from scratch (using no geometry just topology) that the universal cover of T^2 , K or M is not compact (Hint: use the Galois correspondence).
 - (b) Prove that T^2 , K or M can not be made into an S^2 -surface.
- 3. (a) For any subgroup Γ of $Isom(E^2)$ which acts on E^2 in a deck-like way prove that $\{g^2 \mid g \in \Gamma\}$ is a commutative subset $Isom(E^2)$ (a commutative subset is one where all its elements commute with each other).
 - (b) Use this observation to prove that M cannot be made into an E^2 -surface (Hint: once again think Galois correspondence).
- 4. (a) Prove that T^2 covers K.
 - (b) Prove that if K is a G-surface then T^2 can be made into a G-surface as well.
 - (c) Use exercise 3 of the first section in order to prove that T^2 and K can not be made into H^2 -surfaces.

3 Geometrization: Non-compact Existence

Here I'd like to touch on the ideas needed in order to tackle the building of non-compact hyperbolic surfaces which are the orbit space of a group of isometries acting in a "deck like" way; and in particular develop the notion of an earthquake.

- 1. Prove that there is a unique circle tangent to all three of the geodesics forming an ideal triangle, and find this circle's radius.
- 2. Prove that two ideal triangles can be geometrically glued together in an infinite number of ways, describe how the circle in the above exercise 1 can be used to quantify the possible glueings, and describe how this situation differs from the situation for finite triangles. (By geometrically glued I mean the indentification space formed via a mapping sending one edge of a given ideal triangle to an edge of a second ideal triangle via an isometry. In otherwords an isometry from the first edge to the second, which simply amounts to an isometry of one geodesic onto another.)
- 3. (Hard (but I think extremely fun) extra credit.) Look at the pattern we developed for unrolling the punctured torus into the hyperbolic plane.

Using the above parameter, describe how to glue up a collection of ideal triangles in order to form this punctured torus. Now attempt to describe what happens as we change the gluing parameters involved! (Hint: we will always get a topological punctured H^2 -torus however we may fail to "fill up" the hyperbolic plane. Explain why.)

4. (Also extra credit) Describe why it is reasonable to call such parameter changes **earthquakes**.