
The Full Mobius Group and some nifty Sub-groups

The orientation preserving Mobius group M can be naturally extended
via the following set of anti holomorphic mappings...

R =

{

az̄ + b

cz̄ + d
| a, b, c, d ∈ C; ad − bc 6= 0

}

.

Observe M̃ = M
⋃

R is also a group, called the Mobius group. (It is pre-
cisely the group of conformal homeomorphism of Ĉ, while M is the group
of orientation preserving conformal homeomorphisms). Notice that if f and
g are in R then fg is in M . We have the following lemma concerning M̃ ....

Lemma 1 The Full Mobius Group lemma

1. f ∈ R then f is an orientation reversing conformal homeomorphism
of Ĉ.

2. If f ∈ M̃ and f 6= id then f has zero, one, two or a ”circles” worth of
fixed points.

3. For every ”circle” there is a unique element of R fixing it point-wise.

4. If f ∈ M̃ then for every ”circle” C, f(C) is itself a ”circle”.

Exercise 2 If you know some group theory: Prove that M̃ is the semi
direct product of PGL(2, C) and Z/2Z with the non-trivial element in Z/2Z
mapping to the conjugation automorphism of PGL(2, C).

Now we are prepared to understand a pair of particularly nice subgroups
of the Mobius group. Let M̃UHP be the sub-group of M̃ which preserves the
upper-half plane, UHP; and let M̃UD be the sub-group of M̃ which preserves
the unit disk, UD. When the tilde is remove we are asking for the correspond-
ing subgroup of M instead of M̃ . Furthermore let S?L(2, R) be the elements
of GL(2, C) with real coefficients and determinant ±1 and let SL(2, R) be
those GL(2, C) elements with real coefficients and determinant +1. As be-
fore, let PS?L(2, R) ∼= S?L(2, R)/{±I} and PSL(2, R) ∼= SL(2, R)/{±I}.
Furthermore let Θ denote the mapping sending

A =

[

a b
c d

]

in S∗L(2, R) to az+b

cz+d
if A’s determinant is +1 and sending A to az̄+b

cz̄+d
if A’s

determinant is −1.
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Exercise 3 Prove Θ is group homomorphism and that its image is isomor-
phic to PS?L(2, R) when view as mapping from S?L(2, R), and PSL(2, R)
when restricted to SL(2, R).

We have the following lemma...

Lemma 4 The M̃UHP and M̃UD Identification Lemma

1. M̃UHP is isomorphic via Θ to PS∗L(2, R).

2. The Cayley mapping,
−iz + i

z + 1
,

is a conformal homeomorphism of UD onto UHP.

3. M̃UHP
∼= M̃UD.

4. An element of M is in MUD if only only if it can be expressed as

eiθ z − a

āz − 1
.

with θ ∈ [0, 2π) and a ∈ UD.

Exercise 5 Describe a group of matrices which can be identified with the
group MUD via the correspondence described in exercise four of the confor-
mal geometry handout (Hint use the Cayley transformation).

Since the groups above are isomorphic we will call the underlying groups
MH and M̃H . Further more we shall let H denote either the UHP and
UD, where statements involving H shall have two interpretations one in
UHP and one in UD. When we discuss g ∈ M̃H let ρ(g) be g’s matrix
representative as described in part 1 or 4 of the above lemma. Let ∂UD
denote the unit circle, ∂UHP denote the real axis together with infinity,
and let ∂H denote the one making sense of a given statement. For example
here is a statement that can be interpreted in UD or UHP : call a mapping
in MH that fixes one point in H and no points in ∂H elliptic, a mapping
which fixes no points in H and one in ∂H parabolic, and a mapping which
fixes no points in H two points in ∂H hyperbolic. Here is a lemma presented
in this language.

Lemma 6 The MH Classification Lemma

1. Every mapping g 6= id in MH is either elliptic, parabolic, or hyperbolic.
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2. The mapping g 6= id in MH is elliptic if (tr(ρ(g)))2 < 4, parabolic if
(tr(ρ(g)))2 = 4, and hyperbolic if (tr(ρ(g)))2 > 4.

3. The property of being elliptic, hyperbolic, or parabolic is invariant
under conjugation; furthermore every element of of MH is conjugate
to either z + b or a2z (viewed in MUHP with a and b real) or eiθz
(viewed in MUD with θ real).

Now let us look at the mappings in M̃H − MH . Call such a mapping a
glide reflection if it fixes no points in H and two points of ∂H, and call such
mapping a reflection if it fixes a ”circle”.

Exercise 7 1. Prove that every mapping in M̃H −MH is a reflection of
a glide reflection.

2. Prove that g ∈ M̃H − MH is a reflection if tr(ρ(g)) = 0 and a glide
reflection otherwise.

3. Prove that the property of being either a reflection or a glide reflection
is invariant under conjugation, and that every element of of M̃H −MH

is conjugate to either the reflection −z̄ or the glide reflection −a2z̄
(viewed in M̃UHP with a real).
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