The Full Mobius Group and some nifty Sub-groups

The orientation preserving Mobius group M can be naturally extended via the following set of anti holomorphic mappings...

$$
R=\left\{\left.\frac{a \bar{z}+b}{c \bar{z}+d} \right\rvert\, a, b, c, d \in C ; a d-b c \neq 0\right\}
$$

Observe $\tilde{M}=M \bigcup R$ is also a group, called the Mobius group. (It is precisely the group of conformal homeomorphism of \hat{C}, while M is the group of orientation preserving conformal homeomorphisms). Notice that if f and g are in R then $f g$ is in M. We have the following lemma concerning $\tilde{M} \ldots$.

Lemma 1 The Full Mobius Group lemma

1. $f \in R$ then f is an orientation reversing conformal homeomorphism of \hat{C}.
2. If $f \in \tilde{M}$ and $f \neq i d$ then f has zero, one, two or a "circles" worth of fixed points.
3. For every "circle" there is a unique element of R fixing it point-wise.
4. If $f \in \tilde{M}$ then for every "circle" $C, f(C)$ is itself a "circle".

Exercise 2 If you know some group theory: Prove that \tilde{M} is the semi direct product of $P G L(2, C)$ and $Z / 2 Z$ with the non-trivial element in $Z / 2 Z$ mapping to the conjugation automorphism of $P G L(2, C)$.

Now we are prepared to understand a pair of particularly nice subgroups of the Mobius group. Let $\tilde{M}_{U H P}$ be the sub-group of \tilde{M} which preserves the upper-half plane, UHP; and let $\tilde{M}_{U D}$ be the sub-group of \tilde{M} which preserves the unit disk, UD. When the tilde is remove we are asking for the corresponding subgroup of M instead of \tilde{M}. Furthermore let $S^{\star} L(2, R)$ be the elements of $G L(2, C)$ with real coefficients and determinant ± 1 and let $S L(2, R)$ be those $G L(2, C)$ elements with real coefficients and determinant +1 . As before, let $P S^{\star} L(2, R) \cong S^{\star} L(2, R) /\{ \pm I\}$ and $P S L(2, R) \cong S L(2, R) /\{ \pm I\}$. Furthermore let Θ denote the mapping sending

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

in $S^{*} L(2, R)$ to $\frac{a z+b}{c z+d}$ if A 's determinant is +1 and sending A to $\frac{a \bar{z}+b}{c \bar{z}+d}$ if A 's determinant is -1 .

Exercise 3 Prove Θ is group homomorphism and that its image is isomorphic to $P S^{\star} L(2, R)$ when view as mapping from $S^{\star} L(2, R)$, and $P S L(2, R)$ when restricted to $S L(2, R)$.

We have the following lemma...
Lemma 4 The $\tilde{M}_{U H P}$ and $\tilde{M}_{U D}$ Identification Lemma

1. $\tilde{M}_{U H P}$ is isomorphic via Θ to $P S^{*} L(2, R)$.
2. The Cayley mapping,

$$
\frac{-i z+i}{z+1}
$$

is a conformal homeomorphism of UD onto UHP.
3. $\tilde{M}_{U H P} \cong \tilde{M}_{U D}$.
4. An element of M is in $M_{U D}$ if only only if it can be expressed as

$$
e^{i \theta} \frac{z-a}{\bar{a} z-1} .
$$

with $\theta \in[0,2 \pi)$ and $a \in U D$.
Exercise 5 Describe a group of matrices which can be identified with the group $M_{U D}$ via the correspondence described in exercise four of the conformal geometry handout (Hint use the Cayley transformation).

Since the groups above are isomorphic we will call the underlying groups M_{H} and \tilde{M}_{H}. Further more we shall let H denote either the $U H P$ and $U D$, where statements involving H shall have two interpretations one in $U H P$ and one in $U D$. When we discuss $g \in \tilde{M}_{H}$ let $\rho(g)$ be g 's matrix representative as described in part 1 or 4 of the above lemma. Let $\partial U D$ denote the unit circle, $\partial U H P$ denote the real axis together with infinity, and let ∂H denote the one making sense of a given statement. For example here is a statement that can be interpreted in $U D$ or $U H P$: call a mapping in M_{H} that fixes one point in H and no points in ∂H elliptic, a mapping which fixes no points in H and one in ∂H parabolic, and a mapping which fixes no points in H two points in ∂H hyperbolic. Here is a lemma presented in this language.

Lemma 6 The M_{H} Classification Lemma

1. Every mapping $g \neq i d$ in M_{H} is either elliptic, parabolic, or hyperbolic.
2. The mapping $g \neq i d$ in M_{H} is elliptic if $(\operatorname{tr}(\rho(g)))^{2}<4$, parabolic if $(\operatorname{tr}(\rho(g)))^{2}=4$, and hyperbolic if $(\operatorname{tr}(\rho(g)))^{2}>4$.
3. The property of being elliptic, hyperbolic, or parabolic is invariant under conjugation; furthermore every element of of M_{H} is conjugate to either $z+b$ or $a^{2} z$ (viewed in $M_{U H P}$ with a and b real) or $e^{i \theta} z$ (viewed in $M_{U D}$ with θ real).

Now let us look at the mappings in $\tilde{M}_{H}-M_{H}$. Call such a mapping a glide reflection if it fixes no points in H and two points of ∂H, and call such mapping a reflection if it fixes a "circle".

Exercise 7 1. Prove that every mapping in $\tilde{M}_{H}-M_{H}$ is a reflection of a glide reflection.
2. Prove that $g \in \tilde{M}_{H}-M_{H}$ is a reflection if $\operatorname{tr}(\rho(g))=0$ and a glide reflection otherwise.
3. Prove that the property of being either a reflection or a glide reflection is invariant under conjugation, and that every element of of $\tilde{M}_{H}-M_{H}$ is conjugate to either the reflection $-\bar{z}$ or the glide reflection $-a^{2} \bar{z}$ (viewed in $\tilde{M}_{U H P}$ with a real).

