
Conformal geometry

It will be useful to observe that our two-dimensional geometries are an-
alytically one-dimensional, though one complex dimension. Recall from
multivariate calculus, if we are given a differentiable mapping ~f(x, y) =
(u(x, y), v(x, y)) between open subsets R2 its effect on vectors living at the
point (x, y) is given by the f ’s associated Jacobian mapping

f? =

[

ux uy

vx vy

]

.

Recall thats this mappings determinant, the Jacobian Jac(f), is the
is the distortion factor which arises in an integral when changing coordi-
nates, and further more recall that the Jacobian’s sign determines whether
~f changes orientation or not.

We will call ~f conformal it preserves angles i.e. if at each point (x, y) in
~f ’s domain and each pair of vectors v and w at (x, y) we have that

< v,w >

||v||||w|| =
< f?(v), f?(w) >

||f?(v)||||f?(w)|| .

with < −,− > the Euclidean inner-product and ||v|| =
√

< v, v >.

Exercise 1 Prove this is equivalent to f? being in the the form cA with
A ∈ O(2) or rather at each point f? is either in the form

[

a −b
b a

]

or

[

−a b
b a

]

.

Another way of saying this is that either ux = vy and uy = −vxin

which case ~f is called holomorphic or that ux = −vy and uy = vx in which

case ~f is called anti-holomorphic. Notice that the sign of the Jac(f) is
positive for a holomorphic mapping and negative for an anti-holomorphic
mapping. Hence the holomorphic verse ant-holomorphic distinction is in
part one of orientation. When the domain is connected the fact that the
Jacobian cannot be zero together with its continuity implies that a conformal
mapping is either holomorphic or anti-holomorphic throughout the domain.

The beautiful thing about such functions is that they behave like func-
tions of one variable. In oder to articulate this let we will view the real
plane as the complex line with the notation z = x + iy and viewing ~f as
f(z) = u(x, y) + iv(x, y). Recall the notations z̄ = x − iy, |z| =

√

(zz̄),
Im(z) = y,and Re(z) = x. Notice the that our above matrices show up
quite naturally...
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Exercise 2 Let Ψ : C → M2(R) be given by

Ψ(x + iy) =

[

x −y
y x

]

.

Prove Ψ is an algebra isomorphism (i.e. Ψ(z + w) = Ψ(z) + Ψ(w) and
Ψ(zw) = Ψ(z)Ψ(w)).

We now define a pair of derivative that interact elegantly with the com-
plex multiplication

∂

∂z
=

1

2

(

∂

∂x
− i

∂

∂y

)

∂

∂z̄
=

1

2

(

∂

∂x
+ i

∂

∂y

)

.

The utility of these derivatives stems in part stems from there interaction
with the Jacobian mapping via...

Exercise 3 Let [a, b] denote a vector at the point (x, y). If f is holomorphic
show

f?([a, b]) =

(

∂f

∂z

)

(a + ib)

and Jac(f) = |∂f
∂z
|2, where we are evaluating f? and∂f

∂z
at x + iy. If f is

anti-holomorphic show

f?([a, b]) =

(

∂f

∂z̄

)

(a − ib)

and Jac(f) = −|∂f
∂z̄
|2.

Notice this tells us that holomorphic function are precisely the complex
valued complex functions whose derivatives are complex valued as well. It’s
worth pointing that a function is holomorphic if and only if ∂f

∂z̄
= 0 and anti-

holomorphic if and only if ∂f
∂z

= 0. The heart of the utility of this languages
stems form the following...

The Calculus Principle: Holomorphic functions behave as one would
expect when view as one dimensional complex functions. In other words if f
and g are holomorphic then there associated sums, products, compositions
and ∂

∂z
derivatives are also holomorphic. Among holomorphic functions

the ∂
∂z

behaves like the usual derivative, i.e. satisfies the chain, product,
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power, and linearity rules, while the usual 2 dimensional chain rule for a
path becomes becomes

dlf(γ(t))

dt
=

∂f

∂z
(γ(t))

dγ(t)

dt
.

Furthermore real valued functions which are well defined when we replace
the real variable with z are holomorphic functions, and are anti-holomorphic
if we replace the real variable with z̄.

The Riemann Sphere: Since infinity will not play a huge role in our
eventual hyperbolic applications I will only mention the following: More

often than not complex function do not live in the complex plane.
For us it will be best to think of our functions as function to and from the one
point compactification of the complex plane, denoted Ĉ. Ĉ is a topological
sphere, but we need to understand its conformal structure. Fortunately the
stereographic projection map provides a conformal homeomorphism between
the sphere minus a point and the plane. It fact its quite a bit better than
conformal in that it sends circles on the sphere to circles and lines in the
plane and conversely. Hence as a conformal object we are free to view Ĉ as
the usual sphere (called the Riemann sphere when we view it as a conformal
object). By a ”circle” in Ĉ we will mean a circle on the sphere or a circle
or line in the plane. Many natural conformal mappings are best viewed as
conformal mappings of a domain in Ĉ to another domain in Ĉ, and one
should think of the function’s representation as f(z) being as being a view
of this function in a ”coordinate chart”.

For us there is a very special group of holomorphic functions that most
certainly should be viewed in Ĉ given by

M =

{

az + b

cz + d
| a, b, c, d ∈ C; ad − bc 6= 0

}

.

We view this as group under function composition and it is easily verified
to be such. Notice that taking care of ∞ is particular easy here since given
f(z) = az+b

cz+d
we will are forced to define f(∞) = a/c (when c 6= 0 and ∞

otherwise), and we are forced to let f(−d/c) = ∞ when c 6= 0.
This group is related to a familiar matrix group, and this relationship will

prove important in several ways. Let GL(2, C) be the group of two by two
invertible matrices with complex entries. Let notice that {cI | c ∈ C−0} is a
normal subgroup and let PSL(2, R) be the group GL(2, C)/{cI | c ∈ C−0},
this group is call the projective special linear group.
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Exercise 4 Show that the map sending az+b
cz+d

to the equivalence class con-
taining

[

a b
c d

]

in PSL(2, R) is an group isomorphism.

It will be useful to gather an arsenal of some basic properties of this
group.

Lemma 5 The Oreintation Preserving Mobius Group Lemma

1. f ∈ M then f is an orientation preserving conformal homeomorphism
of Ĉ.

2. If f ∈ M and f 6= id then f has either one or two fixed points.

3. f ∈ M is determined by what it does to any three distinct points.

4. Given distinct points {z1, z2, z3} and distinct points {w1, w2, w3} there
exist an f ∈ M such that f(zi) = wi.
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