Handout \#6. Tensors and Alternating Tensors

6. Tensors; Tensor product; Alternating Tensors

Let V be an n-dimensional vector space. Recall that a k-tensor on V is a multilinear map

$$
f: \underbrace{V \times V \times \cdots \times V}_{k \text { times }} \rightarrow \mathbb{R}
$$

In particular, a 1-tensor is a linear functional, and a 2-tensor is a bilinear form.

Exercise 6.1. Show that the space $\mathcal{L}^{k}(V)$ of k-tensors on V is a vector space.

Exercise 6.2. (a) Check that any k-tensor is perfectly determined by its values on all k-tuples of basis vectors $\left\{\left(e_{i_{1}}, e_{i_{2}}, \ldots, e_{i_{k}}\right) \mid 1 \leq i_{1}, \ldots i_{k} \leq n\right\}$.
(b) Let V^{*} be the dual of V. For $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in V^{*}$, define

$$
\alpha_{1} \otimes \alpha_{2} \otimes \ldots \otimes \alpha_{k}: V^{k} \rightarrow \mathbb{R}, \quad \alpha_{1} \otimes \alpha_{2} \otimes \ldots \otimes \alpha_{k}\left(v_{1}, v_{2}, \ldots, v_{k}\right)=\prod_{i=1}^{k} \alpha_{i}\left(v_{i}\right)
$$

Show that $\alpha_{1} \otimes \alpha_{2} \otimes \ldots \otimes \alpha_{k}$ is a tensor.
(c) Find the dimension of $\mathcal{L}^{k}(V)$.

Exercise 6.3. A k-tensor f is said to be alternating if

$$
f\left(v_{1}, \ldots, v_{i}, \ldots, v_{j}, \ldots, v_{k}\right)=-f\left(v_{1}, \ldots, v_{j}, \ldots, v_{i}, \ldots, v_{k}\right), \quad \text { for all } v_{1}, \ldots, v_{k} \in V
$$

Assume that $V=\mathbb{R}^{3}$. Find a basis for the alternating 2- and 3-tensors on \mathbb{R}^{3}.

Exercise 6.4. Let V be an n-dimensional vector space, with basis $\mathcal{B}=\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$.
(a) Show that

$$
\operatorname{det}: V^{n} \rightarrow \mathbb{R}, \quad \operatorname{det}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)=\operatorname{det}\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]
$$

where the matrix has columns $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$, is an alternating n-tensor.
(b) Show that every alternating n-tensor f is uniquely determined by the value $f\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right)$.
(c) Conclude that the space of n tensors is one dimensional with the determinant as generator.

Exercise 6.5. Find the dimension of $\mathcal{A}^{k}(V)$.

