Handout \#5. Manifolds (with or without boundary)

5. Manifolds in \mathbb{R}^{n}

Recall that a point \mathbf{p} of a k-manifold M in \mathbb{R}^{n} is called an boundary point if there is a coordinate patch $\alpha: U \rightarrow V$ on M about \mathbf{p}, with U open in \mathbb{H}^{k} but not in \mathbb{R}^{k}. The following result identifies the boundary points:

Exercise 5.1. Let M be a k-manifold in \mathbb{R}^{n}; let $\alpha: U \rightarrow V$ be a coordinate patch about p. If U is open in \mathbb{H}^{k} and $\mathbf{p}=\alpha\left(\mathbf{x}_{0}\right)$, for $\mathbf{x}_{0} \in \mathbb{R}^{k-1} \times 0$, then \mathbf{p} is a boundary point of M.

The next two problems describe ways to cover the sphere S^{n} with coordinate patches.

Exercise 5.2. Let $M=S^{2}=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=1\right\} \subset \mathbb{R}^{3}$. Let $N=(0,0,1)$ and $S=(0,0,-1)$ be the "North" and "South" poles, respectively. Denote by β_{N} and β_{S} the stereographical projections onto the $x y$-plane from the North and South poles, respectively.
(a) Find the concrete formulas of these maps:

$$
\beta_{N}: S^{2} \backslash\{N\} \rightarrow \mathbb{R}^{2}, \quad \text { and } \beta_{S}: S^{2} \backslash\{S\} \rightarrow \mathbb{R}^{2}
$$

(b) Find the formulas for the coordinate patches given by $\alpha_{N}=\beta_{N}^{-1}$ and $\alpha_{N}=\beta_{N}^{-1}$.
(c) Find the formulas of the compositions $\beta_{N} \circ \alpha_{S}$ and $\beta_{S} \circ \alpha_{N}$, their domains, and show directly that they are of class C^{∞}.

Exercise 5.3. For $n \geq 2$, let $M=S^{n}=\left\{\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n+1}\right) \mid \sum_{k=1}^{n+1} x_{k}^{2}=1\right\} \subset \mathbb{R}^{n+1}$. Denote by U be the unit open disk in \mathbb{R}^{n}, and for each $i=1,2, \ldots, n+1$ let

$$
\alpha_{ \pm i}: U \rightarrow \mathbb{R}^{n+1}, \alpha_{ \pm i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{i-1}, \pm \sqrt{1-\sum_{k=1}^{n} x_{k}^{2}}, x_{i}, \ldots, x_{n}\right)
$$

These are $2(n+1)$ coordinate patches on S^{n}.
(a) Show that the above coordinate patches cover all the points of S^{n}.
(b) Find the formulas for the compositions $\alpha_{ \pm j}^{-1} \circ \alpha_{ \pm i}$, their domains, and show directly that they are of class C^{∞}.

