Handout #5. Manifolds (with or without boundary)

5. Manifolds in \mathbb{R}^n

Recall that a point **p** of a k-manifold M in \mathbb{R}^n is called an **boundary point** if there is a coordinate patch $\alpha : U \to V$ on M about **p**, with U open in \mathbb{H}^k but not in \mathbb{R}^k . The following result identifies the boundary points:

Exercise 5.1. Let M be a k-manifold in \mathbb{R}^n ; let $\alpha : U \to V$ be a coordinate patch about **p**. If U is open in \mathbb{H}^k and $\mathbf{p} = \alpha(\mathbf{x}_0)$, for $\mathbf{x}_0 \in \mathbb{R}^{k-1} \times 0$, then **p** is a boundary point of M.

The next two problems describe ways to cover the sphere S^n with coordinate patches.

Exercise 5.2. Let $M = S^2 = \{ (x, y, z) | x^2 + y^2 + z^2 = 1 \} \subset \mathbb{R}^3$. Let N = (0, 0, 1) and S = (0, 0, -1) be the "North" and "South" poles, respectively. Denote by β_N and β_S the stereographical projections onto the *xy*-plane from the North and South poles, respectively.

(a) Find the concrete formulas of these maps:

$$\beta_N : S^2 \setminus \{N\} \to \mathbb{R}^2$$
, and $\beta_S : S^2 \setminus \{S\} \to \mathbb{R}^2$.

- (b) Find the formulas for the coordinate patches given by $\alpha_N = \beta_N^{-1}$ and $\alpha_N = \beta_N^{-1}$.
- (c) Find the formulas of the compositions $\beta_N \circ \alpha_S$ and $\beta_S \circ \alpha_N$, their domains, and show directly that they are of class C^{∞} .

Exercise 5.3. For $n \ge 2$, let $M = S^n = \left\{ \mathbf{x} = (x_1, x_2, \dots, x_{n+1}) \middle| \sum_{k=1}^{n+1} x_k^2 = 1 \right\} \subset \mathbb{R}^{n+1}$. Denote by U be the unit open disk in \mathbb{R}^n , and for each $i = 1, 2, \dots, n+1$ let

$$\alpha_{\pm i}: U \to \mathbb{R}^{n+1}, \alpha_{\pm i}(x_1, x_2, \dots, x_n) = (x_1, \dots, x_{i-1}, \pm \sqrt{1 - \sum_{k=1}^n x_k^2}, x_i, \dots, x_n).$$

These are 2(n+1) coordinate patches on S^n .

- (a) Show that the above coordinate patches cover all the points of S^n .
- (b) Find the formulas for the compositions $\alpha_{\pm j}^{-1} \circ \alpha_{\pm i}$, their domains, and show directly that they are of class C^{∞} .