Handout \#4. Isometries of \mathbb{R}^{n}

4. Isometries of \mathbb{R}^{n}

Exercise 4.1. Show that an orthogonal set is linearly independent.

Exercise 4.2. Let O_{n} be the set of all orthogonal matrices:

$$
O_{n}=\left\{A \in M_{n}(\mathbb{R}) \mid A^{t} \cdot A=A \cdot A^{t}=I_{n}\right\} .
$$

Show that O_{n} is a group with respect with matrix multiplication.

Definition. A map $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called an Euclidean isometry if

$$
\|h(\mathbf{x})-h(\mathbf{y})\|=\|\mathbf{x}-\mathbf{y}\|, \text { for all } \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}
$$

Exercise 4.3. Let $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, h(\mathbf{0})=\mathbf{0}$.
(a) h is an isometry if and only if it preserves dot products, that is

$$
\langle h(\mathbf{x}), h(\mathbf{y})\rangle=\langle\mathbf{x}, \mathbf{y}\rangle, \text { for all } \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n} .
$$

(b) h is an isometry if and only if it is an orthogonal transformation.

Exercise 4.4. In general, $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an isometry if and only if

$$
h(\mathbf{x})=A \cdot \mathbf{x}+\mathbf{p}, \text { where } A \in O_{n} \text { and } \mathbf{p} \in \mathbb{R}^{n} .
$$

Exercise 4.5. Let $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an isometry. If $S \in \mathbb{R}^{n}$ is rectifiable, then $T=h(S)$ is rectifiable, and $v(T)=v(S)$.

