Handout \#2. Differentiable functions. Chain rule

2. Chain Rule

Exercise 2.1. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is the identity function, $f(\mathbf{x})=\mathbf{x}$, what is $\operatorname{Df}(\mathbf{x})$?

Exercise 2.2. Consider the functions:

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, f(x, y)=\left(e^{x} \cos y, e^{x} \sin y\right)
$$

and

$$
g:\{(x, y) \mid x>0\} \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, g(x, y)=\left(\frac{1}{2} \ln \left(x^{2}+y^{2}\right), \arctan \left(\frac{y}{x}\right)\right)
$$

(a) Compute $D(g \circ f)$ at $(0, \pi / 4)$ and $(-1,0)$.
(b) If f bijective? Is g bijective?
(c) What function is $g \circ f$? (At least make a guess ...)

Note. For more about function f see Exercise 7, from $\S 6$.

