Handout #2. Differentiable functions. Chain rule

2. Chain rule

Exercise 2.1. If $f : \mathbb{R}^n \to \mathbb{R}^n$ is the identity function, $f(\mathbf{x}) = \mathbf{x}$, what is $Df(\mathbf{x})$?

Exercise 2.2. Consider the functions:

$$f: \mathbb{R}^2 \to \mathbb{R}^2, f(x, y) = (e^x \cos y, e^x \sin y),$$

and

$$g: \{ (x,y) | x > 0 \} \subset \mathbb{R}^2 \to \mathbb{R}^2, g(x,y) = \left(\frac{1}{2}\ln(x^2 + y^2), \arctan\left(\frac{y}{x}\right)\right).$$

- (a) Compute $D(g \circ f)$ at $(0, \pi/4)$ and (-1, 0).
- (b) If f bijective? Is g bijective?
- (c) What function is $g \circ f$? (At least make a guess ...)

Note. For more about function f see Exercise 7, from §6.