Handout #1. Review of topology of \mathbb{R}^n

1. Topology of \mathbb{R}^n

Exercise 1.1. Consider the map] $[: \mathbb{R}^n \to \mathbb{R}_+,]\mathbf{x}[=\sum_{i=1}^n |x_i|]$.

- (a) Show that] [is a norm on \mathbb{R}^n .
- (b) Show that [, || ||, and || are equivalent norms.
- (c) For n = 2, make a sketch with the unit balls corresponding of the three norms above.

Exercise 1.2. Show that the topologies generated on a vector space V by two equivalent norms are the same.

Exercise 1.3. We defined a set U of a metric space to be *open* if

for every point $x_0 \in U$ there exists $\varepsilon > 0$ such that $U(x_0; \varepsilon) \subset U$.

Show that the open sets satisfy the axioms $(\tau 1)$, $(\tau 2)$, and $(\tau 3)$ of a topology.

Exercise 1.4. Let f be a function between metric spaces. Give the ε - δ definition of $\lim_{x \to x_0} f(x) = y_0$.

Exercise 1.5.

- (a) Let A be a subset of the topological space X. Show that $x \in BdA$ iff every open set containing x intersects both A and $X \setminus A$.
- (b) Find the boundary of the unit ball $U(\mathbf{0}, 1)$ and half-space $\mathbb{H} = \{ \mathbf{x} \in \mathbb{R}^n \mid x_n \ge 0 \}.$