Math 68. Algebraic Combinatorics. Fall 2013.

Possible topics for student presentations

- 1. Domino tilings of Aztec diamonds. Counting the number of domino tilings of a given shape is a difficult problem in general. However, for the so-called Aztec diamond, the number of domino tilings has a very simple formula.
 - [Aig] Pages 44–50.
- 2. (Taken by James) Random walks in \mathbb{Z}^d . The probability that a random walk in \mathbb{Z}^d returns to the origin is 1 for d = 1, 2, but strictly less than 1 for $d \ge 3$. In other words, you shouldn't get drunk unless you move in at most two dimensions.
 - [Aig] Pages 85–89.
- 3. (*Taken by Kellie and Amanda*) Walks in graphs. The number of walks of given length between two vertices of a graph can be expressed in terms of the eigenvalues of its adjacency matrix. This is a nice connection of combinatorics and linear algebra.
 - [St] Chapter 1.
- 4. Cubes and the Radon transform.
 - [St] Chapter 2.
- 5. The Gessel-Viennot method. This is a remarkable formula to enumerate *n*-tuples of nonintersecting lattice paths. The answer is given by a determinant of binomial coefficients, and the proof is based on the combinatorics of involutions.
 - [Aig] Section 5.4.
 - [EC1] Section 2.7.
 - I. Gessel and G. Viennot, Binomial determinants, paths, and hook length formulae, Advances in Math. 58 (1985), 300–321.
- 6. The descent number and the major index. We say that *i* is a *descent* of a permutation $\pi \in S_n$ if $\pi_i > \pi_{i+1}$. The *major index* of π , denoted $\operatorname{maj}(\pi)$, is defined as the sum of all descents in π . For example, $\operatorname{maj}(12 \cdots n) = 0$ and $\operatorname{maj}(n \cdots 21) = 1 + 2 + \cdots + (n-1)$. On the other hand, an *inversion* of π is a pair (i, j) such that i < j and $\pi_i > \pi_j$. The *inversion number* of π , denoted $\operatorname{inv}(\pi)$, is the number of inversions of π .

The goal of this project is to show that for any value k, the number of permutations $\pi \in S_n$ with $\operatorname{maj}(\pi) = k$ is the same as the number of permutations $\pi \in S_n$ with $\operatorname{inv}(\pi) = k$. In other words, the major index maj is equidistributed with the number of inversions inv, that is,

$$\sum_{\pi \in \mathcal{S}_n} q^{\operatorname{maj}(\pi)} = \sum_{\pi \in \mathcal{S}_n} q^{\operatorname{inv}(\pi)}.$$

A stronger version of this is the fact that the joint distribution of maj and inv is symmetric, that is,

$$\sum_{\pi \in \mathcal{S}_n} q^{\operatorname{maj}(\pi)} t^{\operatorname{inv}(\pi)} = \sum_{\pi \in \mathcal{S}_n} q^{\operatorname{inv}(\pi)} t^{\operatorname{maj}(\pi)}.$$

• [EC1] Proposition 1.4.6.

- D. Foata and M.-P. Schutzenberger, Major index and inversion number of permutations, *Math. Nach.* 83 (1978), 143–159.
- 7. Viennot's geometric construction of the RSK correspondence. In class we will discuss the RSK algorithm, which gives a correspondence between permutations and pairs of standard Young tableaux. A beautiful geometric description of this correspondence is due to Viennot.
 - Section 3.6 of [Bruce Sagan, The Symmetric group, Springer, second edition, 2001].
- 8. (Taken by Jacob) Increasing and decreasing subsequences of permutations. This theory is an application of the Robinson-Schensted correspondence (or RSK algorithm).
 [BS] Section 5.
- 9. (*Taken by Justin and Kate*) The transfer-matrix method. An application of counting walks in graphs to other problems in enumerative combinatorics.
 - [EC1] Section 4.7.
- 10. (Taken by Omar) A combinatorial proof of the Lagrange Inversion Formula.
 [EC2] Theorem 5.4.2 (choose second or third proof).
- 11. (Taken by Sam) A proof of the hook-length formula.
 - [Greene, Nijenhuis, Wilf, A probabilistic proof of a formula for the number of Young tableaux of a given shape, *Adv. in Math.* 31 (1979) 104–109]
 - You can also check [Novelli, Pak, Stoyanovskii, A direct bijective proof of the hooklength formula, *Disc. Math. Comp Sci.* 1 (1997), 53–67].
- 12. (Taken by Sean) Connections of RSK with representation theory and Schur functions.
- 13. A combinatorial proof of the unimodality of the q-binomial coefficients.
 - [D. Zeilberger, Kathy O'Hara's constructive proof of the unimodality of the Gaussian Polynomials, *The American Mathematical Monthly* 96, 590–602].
- 14. Read a paper from a combinatorics journal and present it in class. You are encouraged to talk with me to pick a suitable paper. Here are some interesting journals that you can find in the library or online.
 - Journal of Combinatorial Theory A,
 - Electronic Journal of Combinatorics,
 - Journal of Algebraic Combinatorics,
 - European Journal of Combinatorics,
 - Annals of Combinatorics,
 - Discrete Mathematics.