Math 68. Algebraic Combinatorics. Fall 2013.

Possible topics for student presentations

1. Domino tilings of Aztec diamonds. Counting the number of domino tilings of a given shape is a difficult problem in general. However, for the so-called Aztec diamond, the number of domino tilings has a very simple formula.

- [Aig] Pages 44-50.

2. (Taken by James) Random walks in \mathbb{Z}^{d}. The probability that a random walk in \mathbb{Z}^{d} returns to the origin is 1 for $d=1,2$, but strictly less than 1 for $d \geq 3$. In other words, you shouldn't get drunk unless you move in at most two dimensions.

- [Aig] Pages 85-89.

3. (Taken by Kellie and Amanda) Walks in graphs. The number of walks of given length between two vertices of a graph can be expressed in terms of the eigenvalues of its adjacency matrix. This is a nice connection of combinatorics and linear algebra.

- [St] Chapter 1.

4. Cubes and the Radon transform.

- [St] Chapter 2.

5. The Gessel-Viennot method. This is a remarkable formula to enumerate n-tuples of nonintersecting lattice paths. The answer is given by a determinant of binomial coefficients, and the proof is based on the combinatorics of involutions.

- [Aig] Section 5.4.
- [EC1] Section 2.7.
- I. Gessel and G. Viennot, Binomial determinants, paths, and hook length formulae, Advances in Math. 58 (1985), 300-321.

6. The descent number and the major index. We say that i is a descent of a permutation $\pi \in \mathcal{S}_{n}$ if $\pi_{i}>\pi_{i+1}$. The major index of π, denoted maj (π), is defined as the sum of all descents in π. For example, maj $(12 \cdots n)=0$ and $\operatorname{maj}(n \cdots 21)=1+2+\cdots+(n-1)$. On the other hand, an inversion of π is a pair (i, j) such that $i<j$ and $\pi_{i}>\pi_{j}$. The inversion number of π, denoted $\operatorname{inv}(\pi)$, is the number of inversions of π.

The goal of this project is to show that for any value k, the number of permutations $\pi \in \mathcal{S}_{n}$ with $\operatorname{maj}(\pi)=k$ is the same as the number of permutations $\pi \in \mathcal{S}_{n}$ with $\operatorname{inv}(\pi)=k$. In other words, the major index maj is equidistributed with the number of inversions inv, that is,

$$
\sum_{\pi \in \mathcal{S}_{n}} q^{\operatorname{maj}(\pi)}=\sum_{\pi \in \mathcal{S}_{n}} q^{\operatorname{inv}(\pi)} .
$$

A stronger version of this is the fact that the joint distribution of maj and inv is symmetric, that is,

$$
\sum_{\pi \in \mathcal{S}_{n}} q^{\operatorname{maj}(\pi)} t^{\operatorname{inv}(\pi)}=\sum_{\pi \in \mathcal{S}_{n}} q^{\operatorname{inv}(\pi)} t^{\operatorname{maj}(\pi)} .
$$

- [EC1] Proposition 1.4.6.
- D. Foata and M.-P. Schutzenberger, Major index and inversion number of permutations, Math. Nach. 83 (1978), 143-159.

7. Viennot's geometric construction of the RSK correspondence. In class we will discuss the RSK algorithm, which gives a correspondence between permutations and pairs of standard Young tableaux. A beautiful geometric description of this correspondence is due to Viennot.

- Section 3.6 of [Bruce Sagan, The Symmetric group, Springer, second edition, 2001].

8. (Taken by Jacob) Increasing and decreasing subsequences of permutations. This theory is an application of the Robinson-Schensted correspondence (or RSK algorithm).

- [BS] Section 5.

9. (Taken by Justin and Kate) The transfer-matrix method. An application of counting walks in graphs to other problems in enumerative combinatorics.

- [EC1] Section 4.7.

10. (Taken by Omar) A combinatorial proof of the Lagrange Inversion Formula.

- [EC2] Theorem 5.4.2 (choose second or third proof).

11. (Taken by Sam) A proof of the hook-length formula.

- [Greene, Nijenhuis, Wilf, A probabilistic proof of a formula for the number of Young tableaux of a given shape, Adv. in Math. 31 (1979) 104-109]
- You can also check [Novelli, Pak, Stoyanovskii, A direct bijective proof of the hooklength formula, Disc. Math. Comp Sci. 1 (1997), 53-67].

12. (Taken by Sean) Connections of RSK with representation theory and Schur functions.
13. A combinatorial proof of the unimodality of the q-binomial coefficients.

- [D. Zeilberger, Kathy O'Hara's constructive proof of the unimodality of the Gaussian Polynomials, The American Mathematical Monthly 96, 590-602].

14. Read a paper from a combinatorics journal and present it in class. You are encouraged to talk with me to pick a suitable paper. Here are some interesting journals that you can find in the library or online.

- Journal of Combinatorial Theory A,
- Electronic Journal of Combinatorics,
- Journal of Algebraic Combinatorics,
- European Journal of Combinatorics,
- Annals of Combinatorics,
- Discrete Mathematics.

