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1 Introduction.

A recent newcomer to the the center stage of modern mathematics is the

area called combinatorics. Although combinatorial mathematics has been

pursued since time immemorial, and at a reasonable scienti�c level at least
since Leonhard Euler (1707{1783), the subject has come into its own only in
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the last few decades. The reasons for the spectacular growth of combinatorics

come both from within mathematics itself and from the outside.

Beginning with the outside in
uences, it can be said that the recent de-

velopment of combinatorics is somewhat of a cinderella story. It used to be

looked down on by \mainstream" mathematicians as being somehow less re-

spectable than other areas, in spite of many services rendered to both pure

and applied mathematics. Then along came the prince of computer science

with its many mathematical problems and needs | and it was combinatorics

that best �tted the glass slipper held out.

The developments within mathematics that have contributed to the cur-

rent strong standing of combinatorics are more diÆcult to pinpoint. One
is that, after an era where the fashion in mathematics was to seek general-

ity and abstraction, there is now much appreciation of and emphasis on the
concrete and \hard" problems. Another is that it has been gradually more
and more realized that combinatorics has all sorts of deep connections with

the mainstream areas of mathematics, such as (to name the most important
ones) algebra, geometry, probability and topology.

Our aim with this article is to give the reader some answers to the ques-

tions \What is combinatorics, and what is it good for?" We will do that not
by attempting any kind of general survey, but by describing a few selected

problems and results in some detail. We want to bring you both some ex-
amples of problems from \pure" combinatorics, some examples illustrating
its interactions with other parts of mathematics, and a few glimpses of its

use for computer science. Fortunately, the problems and results of combina-
torics are usually quite easy to state and explain, even to the layman. Its
accessibility is one of its many appealing aspects. For instance, most popular

mathematical puzzles and games, such as Rubik's cube and jigsaw puzzles,

are essentially problems in combinatorics.

To achieve our stated purpose it has been necessary to concentrate on
a few topics, leaving many of the specialities within combinatorics without

mention. The choice will naturally re
ect our own interests. The suggestions

for further reading point to some more general accounts that can help remedy
this shortcoming.
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With some simpli�cation, combinatorics can be said to be the mathe-

matics of the �nite. One of the most basic properties of a �nite collection of

objects is its number of elements. For instance, take words formed from the

letters a, b, and c, using each letter exactly once. There are six such words:

abc; acb; bac; bca; cab; cba:

Now, say that we have n distinct letters. How many words can be formed?

The answer is n � (n � 1) � (n � 2) � � �3 � 2 � 1, because the �rst letter can

be chosen in n ways, then the second one in n � 1 ways (since the letter

already chosen as the �rst letter is no longer available), the third one in n�2
ways, and so on. Furthermore, the total number must be the product of the
number of individual choices.

The number of words that can be formed with n letters is an example
of an enumerative problem. Enumeration is one of the most basic and im-
portant aspects of combinatorics. In many branches of mathematics and its

applications you need to know the number of ways of doing something. One
of the classical problems of enumerative combinatorics is to count partitions

of various kinds, meaning the number of ways to break an object into smaller
objects of the same kind. The study of partition enumeration was begun by
Euler and is very active to this day. We will exposit some parts of this theory.

All along the way there are interesting connections with algebra, but these
are unfortunately too sophisticated to go into details here. We also illustrate
(in Section 11) the relevance of partitions to applied problems.

Another, more recent, topic within enumeration is to count the number

of tilings. These are partitions of a geometric region into smaller regions

of some speci�ed kinds. We will give some glimpses of recent progress in
this area. The mathematical roots are in this case mainly from statistical

mechanics.

Combinatorics is used in many ways in computer science, for instance for

the construction and analysis of various algorithms. (Remark: algorithms are

the logically structured systems of commands that instruct computers how

to perform prescribed tasks.) Of this young but already huge and rapidly

growing area we will give here but the smallest glimpse, namely a couple of

examples from complexity theory. This is the part of theoretical computer

science that concerns itself with questions about computer calculations of
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the type \How hard is it?", \How much time will it take?" Proving that

you cannot do better than what presently known methods allow is often

the hardest part, and the part where the most mathematics is needed. Our

examples are of this kind.

To illustrate the surprising connections that exist between combinatorics

and seemingly unrelated parts of mathematics we have chosen the links with

topology. This is an area which on �rst acquaintance seems far removed

from combinatorics, having to do with very general in�nite spaces. Never-

theless, the tools of algebraic topology have proven to be of use for solving
some problems from combinatorics and theoretical computer science. Again,

the theme of enumeration in its various forms pervades some of this border
territory.

Our �nal topic is a glimpse of progress made in the combinatorial study of
convex polytopes. In three dimensions these are the decorative solid bodies
with 
at polygon sides (such as pyramids, cubes and geodesic domes) that

have charmed and intrigued mathematicians and laymen alike since antiquity.
In higher dimensions they can be perceived only via mathematical tools, but
they are just as beautiful and fascinating. Of this huge subject we discuss

the question of laws governing the numbers of faces of various dimensions on
the boundary of a polytope.

To understand this article should for the most part require hardly any
knowledge of mathematics beyond high-school algebra. Only some details in
the boxes and in the last few sections (having to do with topology) are a bit

more demanding.

2 Partitions.

A fundamental concept in combinatorics is that of a partition. In general,

a partition of an object is a way of breaking it up into smaller objects. We
will be concerned here with partitions of positive integers (positive whole

numbers). Later on we will encounter also other kinds of partitions. The
subject of partitions has a long history going back to Gottfried Wilhelm
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von Leibniz (1646{1716) and Euler, and has been found to have unexpected

connections with a number of other subjects.

A partition of a positive integer n is a way of writing n as a sum of positive

integers, ignoring the order of the summands. For instance, 3+4+2+1+1+4

represents a partition of 15, and 4 + 4 + 3 + 2 + 1 + 1 represents the same

partition. We allow a partition to have only one part (summand), so that 5

is a partition of 5. There are in fact seven partitions of 5, given by

5
4 + 1
3 + 2
3 + 1 + 1
2 + 2 + 1
2 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1:

We denote the number of partitions of n by p(n), so for instance p(5) = 7.
By convention we set p(0) = 1, and similarly for related partition functions

discussed below. The problem of evaluating p(n) has a long history. There
is no simple formula in general for p(n), but there are remarkable and quite
sophisticated methods to compute p(n) for \reasonable" values of n. For

instance, as long ago as 1938 Derrick Henry Lehmer (1905{1991) computed
p(14; 031) (a number with 127 digits!), and nowadays a computer would

have no trouble computing p(1012), a number with 1,113,996 digits. It is
also possible to codify all the numbers p(n) into a single object known as a
generating function. A generating function (in the variable x) is an expression

of the form
F (x) = a0 + a1x+ a2x

2 + a3x
3 + � � � ;

where the coeÆcients a0; a1; : : : are numbers. (We call an the coeÆcient of

xn, and call a0 the constant term. The notation x
0 next to a0 is suppressed.)

The generating function F (x) di�ers from a polynomial in x in that it can

have in�nitely many terms. We regard x as a formal symbol, and do not

think of it as standing for some unknown quantity. Thus the generating
function F (x) is just a way to represent the sequence a0; a1; : : :.

It is natural to ask what advantage is gained in representing a sequence in
such a way. The answer is that generating functions can be manipulated in

various ways that often are useful for combinatorial problems. For instance,
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letting G(x) = b0 + b1x + b2x
2 + � � �, we can add F (x) and G(x) by the rule

F (x) +G(x) = (a0 + b0) + (a1 + b1)x + (a2 + b2)x
2 + � � � :

In other words, we simply add the coeÆcients, just as we would expect from

the ordinary rules of algebra. Similarly we can form the product F (x)G(x)

using the ordinary rules of algebra, in particular the law of exponents xixj =

xi+j. To perform this multiplication, we pick a term aix
i from F (x) and a

term bjx
j fromG(x) and multiply them to get aibjx

i+j. We then add together

all such terms. For instance, the term in the product involving x4 will be

a0 � b4x4 + a1x � b3x3 + a2x
2 � b2x2 + a3x

3 � b1x+ a4x
4 � b0

= (a0b4 + a1b3 + a2b2 + a3b1 + a4b0)x
4:

In general, the coeÆcient of xn in F (x)G(x) will be

a0bn + a1bn�1 + a2bn�2 + � � �+ an�1b1 + anb0:

Consider for instance the product of F (x) = 1 + x + x2 + x3 + � � � with
G(x) = 1� x. The constant term is just a0b0 = 1 � 1 = 1. If n > 1 then the
coeÆcient of xn is anb0 + an�1b1 = 1 � 1 = 0 (since bi = 0 for i > 1, so we

have only two nonzero terms). Hence

(1 + x+ x2 + x3 + � � �)(1� x) = 1:

For this reason we write

1

1� x
= 1 + x + x2 + x3 + � � � :

Some readers will recognize this formula as the sum of an in�nite geometric

series, though here the formula is \formal," that is, x is regarded as just a

symbol and there is no question of convergence. Similarly, for any k � 1 we
get

1

1� xk
= 1 + xk + x2k + x3k + � � � : (1)

Now let P (x) denote the (in�nite) product

P (x) =
1

1� x
�

1

1� x2
�

1

1� x3
� � � :

6



We may also write this product as

P (x) =
1

(1� x)(1� x2)(1� x3) � � �
: (2)

Can any sense be made of this product? According to our previous discussion,

we can rewrite the right-hand side of equation (2) as

P (x) = (1 + x+ x2 + � � �)(1 + x2 + x4 + � � �)(1 + x3 + x6 + � � �) � � � :

To expand this product as a sum of individual terms, we must pick a term

xm1 from the �rst factor, a term x2m2 from the second, a term x3m3 from

the third, etc., multiply together all these terms, and then add all such
products together. In order not to obtain an in�nite (and therefore mean-

ingless) exponent of x, it is necessary to stipulate that when we pick the
terms xm1 ; x2m2 ; x3m3 ; : : :, only �nitely many of these term are not equal to
1. (Equivalently, only �nitely many of the mi are not equal to 0.) We then

obtain a single term xm1+2m2+3m3+���, where the exponent m1+2m2+3m3+� � �
is �nite. The coeÆcient of xn in P (x) will then be the number of ways to write

n in the form m1+2m2+3m3+ � � � for nonnegative integers m1; m2; m3; : : :.
But writing n in this form is the same as writing n as a sum of m1 1's, m2

2's, m3 3's, etc. Such a way of writing n is just a partition of n. For instance,

the partition 5 + 5 + 5 + 4 + 2 + 2 + 2 + 2 + 1 + 1 + 1 of 30 corresponds to
choosing m1 = 3; m2 = 4; m4 = 1; m5 = 3, and all other mi = 0. It follows
that the coeÆcient of xn in P (x) is just p(n), the number of partitions of n,

so we obtain the famous formula of Euler

p(0) + p(1)x+ p(2)x2 + � � � =
1

(1� x)(1� x2)(1� x3) � � �
: (3)

Although equation (3) is very elegant, one may ask whether it is of any

use. Can it be used to obtain interesting information about the numbers

p(n)? To answer that, let us show how simple manipulation of generating

functions (due to Euler) gives a surprising connection between two types of

partitions. Let r(n) be the number of partitions of n into odd parts. For
instance, r(7) = 5, the relevant partitions being

7 = 5 + 1 + 1 = 3 + 3 + 1 = 3 + 1 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 + 1 + 1:

Let

R(x) = r(0) + r(1)x+ r(2)x2 + r(3)x3 + � � � :
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Exactly as equation (3) was obtained we get

R(x) =
1

(1� x)(1� x3)(1� x5)(1� x7) � � �
: (4)

Similarly, let q(n) be the number of partitions of n into distinct parts, that

is, no integer can occur more than once as a part. For instance, q(7) = 5,

the relevant partitions being

7 = 6 + 1 = 5 + 2 = 4 + 3 = 4 + 2 + 1:

Note that r(7) = q(7). In order to explain this \coincidence," let

Q(x) = q(0) + q(1)x+ q(2)x2 + q(3)x3 + � � � :

The reader who understands the derivation of equation (3) will have no trou-
ble seeing that

Q(x) = (1 + x)(1 + x2)(1 + x3) � � � : (5)

Now we come to the ingenious trick of Euler. Note that by ordinary \high
school algebra," we have

1 + xn =
1� x2n

1� xn
:

Thus from equation (5) we obtain

Q(x) =
1� x2

1� x
�
1� x4

1� x2
�
1� x6

1� x3
� � �

=
(1� x2)(1� x4)(1� x6)(1� x8) � � �
(1� x)(1� x2)(1� x3)(1� x4) � � �

: (6)

When we cancel the factors 1�x2i from both the numerator and denominator,
we are left with

Q(x) =
1

(1� x)(1� x3)(1� x5) � � �
;

which is just the product formula (4) forR(x). This means thatQ(x) = R(x).

Thus the coeÆcients of Q(x) and R(x) are the same, so we have proved that

q(n) = r(n) for all n. In other words, for every n the number of partitions of

n into distinct parts equals the number of partitions of n into odd parts.
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The above argument shows the usefulness of working with generating

functions. Many similar generating function techniques have been developed

that make generating functions into a fundamental tool of enumerative com-

binatorics.

Once we obtain a formula such as q(n) = r(n) by an indirect means like

generating functions, it is natural to ask whether there might be a simpler

proof. For the problem at hand, we would like to correspond to each partition

of n into distinct parts a partition of n into odd parts, such that every

partition of n into odd parts is associated with exactly one partition of n
into distinct parts, and conversely every partition of n into distinct parts is

associated with exactly one partition of n into odd parts. In other words, we
want a one-to-one correspondence or bijection between the partitions of n into

odd parts and the partitions of n into distinct parts. Such a bijection would
yield a bijective proof of the formula q(n) = r(n). Exhibiting a bijection
between two di�erent (�nite) sets is considered the most elegant and natural

way to show that they have the same number of elements. Such bijective
proofs can involve considerable ingenuity, while the method of generating
functions often yields a more mechanical proof technique.

We now would like to give a bijective proof of Euler's formula q(n) = r(n).
Several such proofs are known; we give the perhaps simplest of these, due

to James Joseph Sylvester (1814{1897). It is based on the fact that every
positive integer n can be uniquely written as a sum of distinct powers of
two | this is simply the binary expansion of n. For instance, 10000 =

213+210+29+28+24. Suppose we are given a partition into odd parts, such
as

202 = 19 + 19 + 19 + 11 + 11 + 11 + 11 + 9 + 7 + 7 + 7 + 5

+5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 1 + 1 + 1 + 1 + 1 + 1:

We can rewrite this partition as

3 � 19 + 4 � 11 + 1 � 9 + 3 � 7 + 13 � 5 + 6 � 1;

where each part is multiplied by the number of times it appears. This is just
the expression m1 + 2m2 + 3m3 + � � � for a partition discussed above. Now

write each of the numbers mi as a sum of distinct powers of 2. For the above

example, we get

202 = (2 + 1) � 19 + 4 � 11 + 1 � 9 + (2 + 1) � 7 + (8 + 4 + 1) � 5 + (4 + 2) � 1:
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Expand each product into a sum (by the distributivity of multiplication over

addition):

202 = (38 + 19) + 44 + 9 + (14 + 7) + (40 + 20 + 5) + (4 + 2): (7)

We have produced a partition of the same number n with distinct parts.

That the parts are distinct is a consequence of the fact that every integer n

can be uniquely written as the product of an odd number and a power of 2

(keep on dividing n by 2 until an odd number remains). Moreover, the whole

procedure can be reversed. That is, given a partition into distinct parts such

as

202 = 44 + 40 + 38 + 20 + 19 + 14 + 9 + 7 + 5 + 4 + 2;

group the terms together according to their largest odd divisor. For instance,
40, 20, and 5 have the largest odd divisor 5, so we group them together. We

thus recover the grouping (7). We can now factor the largest odd divisor d out
of each group, and what remains is the number of times d appears as a part.

Thus we have recovered the original partition. This reasoning shows that we
have indeed produced a bijection between partitions of n into odd parts and
partitions of n into distinct parts. It provides a \natural" explanation of the

fact that q(n) = r(n), unlike the generating function proof which depended
on a miraculous trick.

The subject of partitions is replete with results similar to Euler's, in

which two sets of partitions turn out to have the same number of elements.
The most famous of these results is called the Rogers-Ramanujan identities,

after Leonard James Rogers (1862{1933) and Srinivasa Aiyangar Ramanujan

(1887{1920), who proved these identities in the form of an identity between
generating functions. It was Percy Alexander MacMahon (1854{1929) who

interpreted them combinatorially as follows.

First Rogers-Ramanujan Identity. Let f(n) be the number of par-

titions of n whose parts di�er by at least 2. For instance, f(13) = 10, the

relevant partitions being

13 = 12 + 1 = 11 + 2 = 10 + 3 = 9 + 4 = 8 + 5 = 9 + 3 + 1

= 8 + 4 + 1 = 7 + 5 + 1 = 7 + 4 + 2:
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Similarly, let g(n) be the number of partitions of n whose parts are of the

form 5k + 1 or 5k + 4 (i.e., leave a remainder of 1 or 4 upon division by 5).

For instance, g(13) = 10:

11 + 1 + 1 = 9 + 4 = 9 + 1 + 1 + 1 + 1 = 6 + 6 + 1 = 6 + 4 + 1 + 1 + 1

= 6+1+1+1+1+1+1+1 = 4+4+4+1 = 4+4+1+1+1+1+1

= 4+1+1+1+1+1+1+1+1+1 = 1+1+1+1+1+1+1+1+1+1+1+1+1:

Then f(n) = g(n) for every n.

Second Rogers-Ramanujan Identity. Let u(n) be the number of par-
titions of n whose parts di�er by at least 2 and such that 1 is not a part. For

instance, u(13) = 6, the relevant partitions being

13 = 11 + 2 = 10 + 3 = 9 + 4 = 8 + 5 = 7 + 4 + 2:

Similarly, let v(n) be the number of partitions of n whose parts are of the

form 5k + 2 or 5k + 3 (i.e., leave a remainder of 2 or 3 upon division by 5).

For instance, v(13) = 6:

13 = 8+3+2 = 7+3+3 = 7+2+2+2 = 3+3+3+2+2 = 3+2+2+2+2+2:

Then u(n) = v(n) for every n.

The Rogers-Ramanujan identities have been given many proofs, but none
of them is really easy. The important role played by the number 5 seems

particularly mysterious. For a long time it was an open problem to �nd
a bijective proof of the Rogers-Ramanujan identities, but such a proof was

�nally given in 1980 by Adriano Mario Garsia (b. 1928) and Stephen Carl

Milne (b. 1949). However, their proof is very complicated, and it would still
be of great interest to �nd a simple, conceptual bijective proof.

The Rogers-Ramanujan identities and related identities are not just num-

ber-theoretic curiosities. They have arisen completely independently in sev-

eral seemingly unrelated areas. To give just one example, a famous open

problem in statistical mechanics, known as the hard hexagon model, was
solved in 1980 by Rodney James Baxter (b. 1940) using the Rogers-Ramanujan

identities.
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The subject of partition identities has received so much attention since

Euler that one would not expect a whole new class of relatively simple iden-

tities to have remain undiscovered until recently. However, just such a class

of identities was found by Mireille Bousquet-M�elou (b. 1967) and Kimmo

Eriksson (b. 1967) beginning in 1996. We will state one of the simplest of

their identities to give the reader the striking 
avor of their results.

The Lucas numbers Ln are de�ned by the conditions L1 = 1, L2 = 3,

and Ln+1 = Ln + Ln�1 for n � 2. Thus L3 = 4, L4 = 7, L5 = 11, L6 = 18,

L7 = 29, etc. Those familiar with Fibonacci numbers will see that the Lucas
numbers satisfy the same recurrence as Fibonacci numbers, but with the

initial conditions L1 = 1 and L2 = 3, rather that F1 = F2 = 1 for Fibonacci
numbers. Let f(n) be the number of partitions of n all of whose parts

are Lucas numbers L2n+1 of odd index. For instance, we have f(12) = 5,
corresponding to the partitions

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
4 + 4 + 1 + 1 + 1 + 1

4 + 4 + 4
11 + 1

:

Let g(n) be the number of partitions of n into parts a1 � a2 � � � � � ak
such that ai=ai�1 >

1

2
(3 +

p
5) = 2:618 � � � for all i. For instance, g(12) = 5,

corresponding to the partitions

12; 11 + 1; 10 + 2; 9 + 3; and 8 + 3 + 1:

Note that the number 1

2
(3 +

p
5) used to de�ne g(n) is the square of the

\golden ratio" 1

2
(1 +

p
5).

The surprising result of Bousquet-M�elou and Eriksson is that f(n) = g(n)
for all n.
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7 4 4 4 2 2 1 1 1 1

7 4 4 2 2 1 1 1 1

6 3 2 2 2 1 1 1 1

4 2 2 1 1 1

2 2 1 1 1

2 1 1 1 1

1 1 1 1 1

1 1

Figure 1: A plane partition

3 Plane partitions.

A partition such as 8 + 6 + 6 + 5 + 2 + 2 + 2 + 2 + 1 + 1 may be regarded
simply as a linear array of positive integers,

8 6 6 5 2 2 2 2 1 1

whose entries are weakly decreasing, i.e., each entry is greater than or equal
to the one on its right. Viewed in this way, one can ask if there are interesting

\multidimensional" generalizations of partitions, in which the parts don't lie
on just a line, but rather on some higher dimensional object. The simplest
generalization occurs when the parts lie in a plane. Rather than having the

parts weakly decreasing in a single line, we now want the parts to be weakly
decreasing in every row and column. More precisely, let � be a partition with

its parts �1; �2; : : : ; �` written in weakly decreasing order, so �1 � �2 � � � � �
�` > 0. We de�ne a plane partition � of shape � to be a left-justi�ed array

of positive integers (called the parts of �) such that (1) there are �i parts in

the ith row, and (2) every row (read left-to-right) and column (read top-to-
bottom) is weakly decreasing. An example of a plane partition is given in

Figure 1.

We say that � is a plane partition of n if n is the sum of the parts of

�. Thus the plane partition of Figure 1 is a plane partition of 100, of shape
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(10; 9; 9; 6; 5; 5; 5; 2). It is clear what is meant by the number of rows and

number of columns of �. For the example in Figure 1, the number of rows is

8 and the number of columns is 10. The plane partitions of integers up to 3

(including the empty set �, which is regarded as a plane partition of 0) are

given by

� 1 2 11 1 3 21 111 11 2 1
1 1 1 1

1
:

Thus, for instance, there are six plane partitions of 3.

In 1912 MacMahon began a study of the theory of plane partitions.

MacMahon was a mathematician well ahead of his time. He worked in virtual
isolation on a variety of topics within enumerative combinatorics that did not

become fashionable until many years later. A highlight of MacMahon's work
was a simple generating function for the number of plane partitions of n.
More precisely, let pp(n) denotes the number of plane partitions of n, so that

pp(0) = 1; pp(1) = 1; pp(2) = 3; pp(3) = 6; pp(4) = 13; etc.

MacMahon's Theorem.

pp(0) + pp(1)x+ pp(2)x2 + pp(3)x3 + � � �

=
1

(1� x)(1� x2)2(1� x3)3(1� x4)4 � � �
: (8)

Unlike Euler's formula (3) for the generating function for the number p(n)
of ordinary partitions of n, MacMahon's remarkable formula is by no means

easy to prove. MacMahon's proof was an intricate induction argument in-

volving manipulations of determinants. Only much later was a bijective proof
found by Edward Anton Bender (b. 1942) and Donald Ervin Knuth (b. 1938).

Their proof was based on the Schensted correspondence, a central result in
enumerative combinatorics and its connections with the branch of mathe-

matics known as representation theory. This correspondence was �rst stated

by Gilbert de Beauregard Robinson (1906{1992) in a rather vague form in
1938 (with some assistance from Dudley Ernest Littlewood (1903{1979)),

and later more explicitly by Craige Eugene Schensted (b. 1927 or 1928) in

1961. Schensted's motivation for looking at this correspondence is discussed
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in Section 5. The version of Schensted's correspondence used here is due to

Knuth.

We now give a brief account of the proof of Bender and Knuth. Using

equation (1), the product on the right-hand side of (8) may be written

1

(1� x)(1� x2)2(1� x3)3(1� x4)4 � � �
= (1+ x+ x2 + � � �)(1 + x2 + x4 + � � �)

(1+x2+x4+� � �)(1+x3+x6+� � �)(1+x3+x6+� � �)(1+x3+x6+� � �) � � � : (9)

In general, there will be k factors of the form 1 + xk + x2k + x3k + � � �. We
must pick a term out of each factor (with only �nitely many terms not equal
to 1) and multiply them together to get a term xn of the product. A bijective

proof of (8) therefore consists of associating a plane partition of n with each
choice of terms from the factors 1 + xk + x2k + � � �, such that the product of
these terms is xn.

Our �rst step is to encode a choice of terms from each factor by an array
of numbers called a two-line array. A typical two-line array A looks like

A =
3 3 3 2 2 2 2 2 1 1 1 1 1
3 1 1 2 2 2 1 1 4 4 3 3 3

: (10)

The �rst line is a (�nite) weakly decreasing sequence of positive integers.

The second line consists of a positive integer below each entry in the �rst
line, such that the integers in the second line appearing below equal integers
in the �rst line are in weakly decreasing order. For instance, for the two-

line array A above, the integers appearing below the 2's of the �rst line are
2 2 2 1 1 (in that order). Such a two-line array encodes a choice of terms

from the factors of the product (9) as follows. Let aij be the number of

columns i

j
of A. For instance (always referring to the two-line array (10)),

a33 = 1; a31 = 2; a13 = 3; a23 = 0. Given aij, let k = i+ j� 1. Then choose

the term xaij �k from the ith factor of (9) of the form 1 + xk + x2k + � � �. For
instance, since a33 = 1 we have k = 5 and choose the term x1�5 = x5 from the

third factor of the form 1 + x5 + x10 + � � �. Since a31 = 2 we have k = 3 and

choose the term x2�3 = x6 from the third factor of the form 1+ x3 + x6+ � � �,
etc. In this way we obtain a one-to-one correspondence between a choice of

terms from each factor of the product (9) (with only �nitely terms not equal

to 1) and two-line arrays A.
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We now describe the part of the Bender-Knuth bijection which is the

Schensted correspondence. It will be described as an algorithm that we call

the Schensted algorithm. We will insert the numbers in each line of the two-

line array A into a successively evolving plane partition, yielding in fact a

pair of plane partitions. These plane partitions will have the special property

of being column-strict, that is, the (nonzero) entries are strictly decreasing

in each column. Thus after we have inserted the �rst i numbers of the �rst

and second lines of A, we will have a pair Pi and Qi of column-strict plane

partitions. We insert the numbers of the second line of A successively from

left-to-right by the following rule. Assuming that we have inserted the �rst

i � 1 numbers, yielding Pi�1 and Qi�1, we insert the ith number a of the
second row of A into Pi�1, by putting it as far to the right as possible in the

�rst row of Pi�1 so that this row remains weakly decreasing. In doing so,
it may displace (or bump) another number b already in the �rst row. Then
insert b into the second row according to the same rule, that is, as far to the

right as possible so that the second row remains weakly decreasing. Then
b may bump a number c into the third row, etc. Continue this \bumping
procedure" until �nally a number is inserted at the end of the row, thereby

not bumping another number. This yields the column-strict plane partition
Pi. (It takes a little work, which we omit, to show that Pi is indeed column-

strict.) Now insert the ith number of the �rst row of A (that is, the number
just above a in A) into Qi�1 to form Qi, by placing it so that Pi and Qi

have the same shape, that is, the same number of elements in each row. If

A has m columns, then the process stops after obtaining Pm and Qm, which
we denote simply as P and Q.

Example. Figure 2 illustrates the bumping procedure with the two-line

array A of equation (10). For instance, to obtain P10 from P9 we insert 4

into the �rst row of P9. The 4 is inserted into the second column and bumps

the 2 into the second row. The 2 is also inserted into the second column and

bumps the 1 into the third row. The 1 is placed at the end of the third row.
To obtain Q10 from Q9 we must place 1 so that P10 and Q10 have the same

shape. Hence 1 is placed at the end of the third row. From the bottom entry

(i = 13) of Figure 2 we obtain:

P =
4 4 3 3 3 1
3 2 2 2 1
1 1

; Q =
3 3 3 2 2 2
2 2 1 1 1
1 1

: (11)
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i Pi Qi

1 3 3

2 3 1 3 3

3 3 1 1 3 3 3

4 3 2 1 3 3 3
1 2

5 3 2 2 3 3 3
1 1 2 2

6 3 2 2 2 3 3 3 2
1 1 2 2

7 3 2 2 2 1 3 3 3 2 2
1 1 2 2

8 3 2 2 2 1 1 3 3 3 2 2 2
1 1 2 2

9 4 2 2 2 1 1 3 3 3 2 2 2
3 1 2 2
1 1

10 4 4 2 2 1 1 3 3 3 2 2 2
3 2 2 2
1 1 1 1

11 4 4 3 2 1 1 3 3 3 2 2 2
3 2 2 2 2 1
1 1 1 1

12 4 4 3 3 1 1 3 3 3 2 2 2
3 2 2 2 2 2 1 1
1 1 1 1

13 4 4 3 3 3 1 3 3 3 2 2 2
3 2 2 2 1 2 2 1 1 1
1 1 1 1

Figure 2: The Schensted correspondence
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The �nal step of the Bender-Knuth bijection is to merge the two column-

strict plane partitions P and Q into a single plane partition �. We do this by

merging column-by-column, that is, the kth columns of P and Q are merged

to form the kth column of �. Let us �rst merge the �rst columns of P and Q

in equation (11). The following diagram illustrates the merging procedure:

r r r

r r r r

r r r r

@
@
@
@
@

@@

The number of dots in each row on or to the right of the main diagonal
(which runs southeast from the upper left-hand corner) is equal to 4; 3; 1,

the entries of the �rst column of P . Similarly, the number of dots in each
column on or below the main diagonal is equal to 3; 2; 1, the entries of the
�rst column of Q. The total number of dots in each row is 4; 4; 3, and we let

these numbers be the entries of the �rst column of �. In the same way, the
second column of � has entries 4; 3; 3, as shown by the following diagram:

r r r

r r r

r r r r

@
@
@
@
@

@@

When this merging procedure is carried out to all the columns of P and
Q, we obtain the plane partition

� =

4 4 3 3 3 1

4 3 3 3 2 1

3 3 1
: (12)

This gives the desired bijection that proves MacMahon's formula (8). Of

course there are many details to be proved in order to verify that this pro-
cedure has all the necessary properties. The key point is that every step is

reversible. A good way to convince yourself of the accuracy of the procedure

is to take the plane partition � of equation (12) and try to reconstruct the

18



original choice of terms from the product 1=(1� x)(1� x2)2 � � �.

By analyzing more carefully the above bijective proof, it is possible to

extend the formula (8) of MacMahon. Write [i] as short for 1� xi. Without

going into any of the details, let us simply state that if pprs(n) denotes the

number of plane partitions of n with at most r rows and at most s columns,

where say r � s, then

1 + pprs(1)x + pprs(2)x
2 + � � � =

1

[1][2]2[3]3 � � � [r]r[r + 1]r � � � [s]r[s + 1]r�1[s+ 2]r�2 � � � [r + s� 1]
: (13)

For instance, when r = 3 and s = 5 the right-hand side of equation (13)
becomes

1

(1� x)(1� x2)2(1� x3)3(1� x4)3(1� x5)3(1� x6)2(1� x7)

= 1+x+3x2+6x3+12x4+21x5+39x6+64x7+109x8+175x9+280x10+� � � :
For example, the fact that the coeÆcient of x4 is 12 means that there are
12 plane partitions of 4 with at most 3 rows and at most 5 columns. These

plane partitions are given by

4 3 1 2 2 2 1 1 1 1 1 1 3 2 2 1 1 1 1 1 1 2 1 1
1 2 1 1 1 1 1 1

1 1
:

By more sophisticated arguments (not a direct bijective proof) one can extend
equation (13) even further, as follows. Let pprst(n) denote the number of

plane partitions of n with at most r rows, at most s columns, and with

largest part at most t. Then

1 + pprst(1)x + pprst(2)x
2 + � � � =

[1 + t][2 + t]2[3 + t]3 � � � [r + t]r[r + 1 + t]r � � � [s+ t]r[s + 1 + t]r�1[s+ 2 + t]r�2 � � � [r + s� 1 + t]

[1][2]2[3]3 � � � [r]r[r + 1]r � � � [s]r[s+ 1]r�1[s + 2]r�2 � � � [r + s� 1]
:

(14)

Note that the right-hand sides of equations (13) and (14) have the same

denominator. The numerator of (14) is obtained by replacing each denomi-
nator factor [i] with [i+t]. Equation (14) was also �rst proved by MacMahon,
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and is the culmination of his work on plane partitions. It is closely related

to some facts in representation theory , a subject that at �rst sight seems to

have no connection with plane partitions. (See the Box \Connections with

representation theory".) MacMahon's results have many other variations

which give simple product formulas for enumerating various classes of plane

partitions. It seems natural to try to extend these results to even higher

dimensions. Thus a three-dimensional analogue of plane partitions would be

solid partitions. All attempts (beginning in fact with MacMahon) to �nd

nice formulas for general classes of solid partitions have resulted in failure.

It seems that plane partitions are fundamentally di�erent in behavior than

their higher dimensional analogues.

As a concrete example of equation (14), suppose that r = 2, s = 3, and

t = 2. The right-hand side of (14) becomes

(1� x3)(1� x4)2(1� x5)2(1� x6)

(1� x)(1� x2)2(1� x3)2(1� x4)

= 1+x+3x2+4x3+6x4+6x5+8x6+6x7+6x8+4x9+3x10+x11 +x12:

The Schensted correspondence has a number of remarkable properties

that were not needed for the derivation of MacMahon's formula (8). The
most striking of these properties is the following. Consider a two-line array
A such as (10) which is the input to the Schensted correspondence. Now

interchange the two rows, and sort the columns so that the �rst row is weakly
decreasing, and the part of the second row below a �xed number in the �rst
row is also weakly decreasing. Call this new two-line array the transposed

array A0. For the two-line array A of equation (10) we have

A0 =
4 4 3 3 3 3 2 2 2 1 1 1 1
1 1 3 1 1 1 2 2 2 3 3 2 2

(15)

Thus the Schensted correspondence can be applied to A0. If (P;Q) is the

pair of column-strict plane partitions obtained by applying the Schensted

correspondence to A, then applying this correspondence to A0 produces the
pair (Q;P ), that is, the roles of P and Q are reversed! Keeping in mind the

totally di�erent combinatorial rules for forming P and Q, it seems almost
miraculous when trying a particular example such as (10) and (15) that
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we obtain such a simple result. We can use this \symmetry property" of the

Schensted correspondence to enumerate further classes of plane partitions. In

particular, a plane partition is called symmetric if it remains the same when

re
ected about the main diagonal running from the upper left-hand corner in

the southeast direction. An example of a symmetric plane partition is given

by
5 3 3 2 1 1 1
3 3 3 2 1
3 3 2 1 1
2 2 1
1 1 1
1
1

Let s(n) denote the number of symmetric plane partitions of n. For instance,

s(5) = 4, as shown by
5 31 21 111

1 11 1
1

:

Without going into any details, let us just say that the symmetry property of

the Schensted correspondence just described yields a bijective proof, similar
to the proof we have given of MacMahon's formula (8), of the generating

function
s(0) + s(1)x+ s(2)x2 + � � �

=
1

(1� x)(1� x3)(1� x4)(1� x5)(1� x6)(1� x7)(1� x8)2(1� x9)(1� x10)2 � � �
:

The exponent of 1�x2k�1 in the denominator is 1, and the exponent of 1�x2k
is bk=2c, the greatest integer less than or equal to k=2.

4 Standard Young tableaux.

There is a special class of objects closely related to plane partitions that

are of considerable interest. Let � be an ordinary partition of n with parts
�1 � �2 � � � � � �`. A standard Young tableau (SYT) of shape � is a left-

justi�ed array of positive integers, with �i integers in the ith row, satisfying
the following two conditions: (1) The entries consist of the integers 1; 2; :::; n,
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each occurring exactly once, and (2) the entries in each row and column are

increasing. An example of an SYT of shape (4; 3; 2) is given by

1 3 4 6

2 7 8

5 9
(16)

There are exactly ten SYT of size four (that is, with four entries), given by

1 2 3 4 1 2 3 1 2 4 1 3 4 1 2 1 3 1 2 1 3 1 4 1
4 3 2 3 4 2 4 3 2 2 2

4 4 3 3
4

Standard Young tableaux have a number of interpretations which make them

of great importance in a variety of algebraic, combinatorial, and probabilistic
problems. Here we will only mention a classical problem called the ballot

problem, which has numerous applications in probability theory. Given a
partition � = (�1; : : : ; �`) as above with �1 + � � �+ �` = n, we suppose that
an election is being held among ` candidates A1; : : : ; A`. At the end of the

election candidate Ai receives �i votes. The voters vote in succession one
at a time. We record the votes of the voters as a sequence a1; a2; : : : ; an,
where aj = i if the jth voter votes for Ai. The sequence a1; a2; : : : ; an is

called a ballot sequence (of shape �) if at no time during the voting does any
candidate Ai trail another candidate Aj with j > i. Thus the candidates

maintain their relative order (allowing ties) throughout the election. For
instance, the sequence 1; 2; 1; 3; 1; 3; 4; 2 is not a ballot sequence, since at the
end A2 and A3 receive the same number of votes, but after six votes A2 trails

A3. On the other hand, the sequence 1; 2; 1; 3; 1; 2; 4; 3 is a ballot sequence.
Despite the di�erence in their descriptions, a ballot sequence is nothing more

than a disguised version of an SYT. Namely, if T is an SYT, then de�ne
aj = i if j appears in the ith row of T . A little thought should convince the

reader that the sequence a1; a2; : : : ; an is then a ballot sequence, and that

all ballot sequences come in this way from SYT's. For instance, the SYT of
equation (16) corresponds to the ballot sequence 1; 2; 1; 1; 3; 1; 2; 2; 3.

It is natural (at least for a practitioner of combinatorics) to ask how many

SYT there are of a given shape �. This number is denoted f�. For instance,

there are nine SYT of shape (4; 2), which we write as f 4;2 = 9. These nine
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SYT are given by

1 2 3 4 1 2 3 5 1 2 3 6 1 2 4 5 1 2 4 6 1 2 5 6 1 3 4 5 1 3 4 6 1 3 5 6

5 6 4 6 4 5 3 6 3 5 3 4 2 6 2 5 2 4

A formula for f� (stated in terms of ballot sequences) was given by MacMa-

hon in 1900. A simpli�ed version was given was James Sutherland Frame

(1907{1997), Robinson (mentioned earlier in connection with the Schensted

correspondence), and Robert McDowell Thrall (b. 1914) in 1954, and is

known as the Frame-Robinson-Thrall hook-length formula. To state this

formula, we de�ne a Young diagram of shape � as a left-justi�ed array of

squares with �i squares in the ith row. For instance, a Young diagram of
shape (5; 5; 2) looks like

:

An SYT of shape � can then be regarded as an insertion of the numbers
1; 2; : : : ; n (each appearing once) into the squares of a Young diagram of

shape � such that every row and column is increasing. If s is a square of a
Young diagram, then de�ne the hook-length of s to be the number of squares
to the right of s and in the same row, or below s and in the same column,

counting s itself once. In the following �gure, we have inserted inside each
square of the Young diagram of shape (5; 5; 2) its hook-length.

7 6 4 3 2

6 5 3 2 1

2 1

The hook product H� of a partition � is the product of the hook-lengths of

its Young diagram. Thus for instance from the above �gure we see that

H5;5;2 = 7 � 6 � 4 � 3 � 2 � 6 � 5 � 3 � 2 � 1 � 2 � 1 = 362; 880:

The Frame-Robinson-Thrall formula can now be stated. Here � is a partition

of n and n! (read \n factorial") is short for 1 � 2 � � �n.
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Hook-length Formula.

f� =
n!

H�

: (17)

For instance,

f 5;5;2 =
12!

362; 880
= 1320:

It is remarkable that such a simple formula for f� exists, and no really

simple proof is known. The proof of Frame-Robinson-Thrall amounts to sim-

plifying MacMahon's formula for f�, which MacMahon obtained by solving
di�erence equations (the discrete analogue of di�erential equations). Other

proofs were subsequently given, including several bijective proofs, but none
is as simple as the proof we have sketched of equation (8) using Schensted's

correspondence.

In addition to their usefulness in combinatorics, SYT also play a sig-
ni�cant role in the theory of symmetry. This important theory (known in

mathematics as \the representation theory of the symmetric group") was
developed primarily by Alfred Young (1873{1940), who was a clergyman by

profession and a fellow of Clare College, Cambridge, a Canon of Chelmsford,
and Rector of Birdbrook, Essex (1910{1940). Roughly speaking, this theory
describes the possible \symmetry states" of n objects. See the Box entitled

\Connections with representation theory" for more details.

A permutation of the numbers 1; 2; : : : ; n is simply a rearrangement, that
is, a way of listing these numbers in some order. For instance, 5; 2; 7; 6; 1; 4; 3

(also written as just 5276143 when no confusion can arise) is a permutation

of 1; 2; 3; 4; 5; 6; 7. The number of permutations of 1; 2; : : : ; n is n! = n(n �
1) � � �2 � 1. This fact was motivated in the Introduction, where we spoke
about words with n distinct letters, which are easily seen to be equivalent to

permutations.

It is an immediate consequence of the theory of symmetry that the number

of ordered pairs of SYT of the same shape and with n squares is equal to n!,
i.e. the number of permutations of n objects. For instance, when n = 3 we

24



get the six pairs

�
1 2 3 1 2 3

� �
1 2 1 2
3 3

� �
1 2 1 3
3 2

�

�
1 3 1 2
2 3

� �
1 3 1 3
2 2

�  
1 1
2 2
3 3

!
:

The fact that the number of pairs of SYT of the same shape and with n

squares is n! can also be expressed by the formulaX
�`n

�
f�
�2

= n!; (18)

where � ` n denotes that � is a partition of n. A combinatorialist will imme-
diately ask whether there is a bijective proof of this formula. In other words,

given a permutation w of the numbers 1; 2; : : : ; n, can we associate with w a
pair (T1; T2) of SYT of the same shape and with n squares, such that every
such pair occurs exactly once? In fact we have already seen the solution

to this problem | it is just a special case of the Schensted correspondence!
There is only one minor technicality that needs to be explained before we
apply the Schensted correspondence. Namely, the column-strict plane par-

titions we were dealing with before have every row and column decreasing,
while SYT have every row and column increasing. However, given a plane

partition whose entries are the integers 1; 2; : : : ; n, each appearing once (so
it will automatically be column-strict), we need only replace i by n + 1 � i

to obtain an SYT of the same shape. We will call a plane partition whose

(nonzero) parts are the integers 1; 2; : : : ; n, each appearing once, a reverse

SYT. An example of an SYT and the corresponding reverse SYT obtained
by replacing i with n+ 1� i is shown in Figure 3.

So consider now a permutation such as 5; 2; 6; 1; 4; 7; 3. Write this as the
second line of a two-line array whose �rst line is n; n� 1; : : : ; 1. Here we get

the two-line array

A =
7 6 5 4 3 2 1

5 2 6 1 4 7 3
:

When we apply the Schensted correspondence to this two-line array, we will
obtain a pair of column-strict plane partitions of the same shape whose parts
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1 3 4 9 7 6

2 6 8 8 4 2

5 9 5 1

7 3

Figure 3: An SYT and its corresponding reverse SYT

are 1; 2; : : : ; n, each appearing once. Namely, we get

7 4 3 7 6 4
6 2 1 5 3 1
5 2

:

If we replace i by 8� i, we get the following pair of SYT of the same shape

(3; 3; 1):
1 4 5 1 2 4
2 6 7 3 5 7
3 6

:

The process is reversible; that is, beginning with a pair (P;Q) of SYT of

the same shape, we can reconstruct the permutation that produced it. (The
details of this argument are left as an exercise.) Therefore the number of
pairs of SYT of the same shape and with n entries is equal to the number

of permutations a1; : : : ; an of 1; 2; : : : ; n, yielding the formula (18). This
remarkable connection between permutations and tableaux is the foundation
for an elaborate theory of permutation enumeration. In the next section we

give a taste of this theory.

BOX: Connections with representation theory. In this box we
assume familiarity with the fundamentals of representation theory. First we

consider the group G = GL(n; C ) of all invertible linear transformations on

an n-dimensional complex vector space V . We will identify G with the group
of n � n invertible complex matrices. A polynomial representation of G of

degree N is a homomorphism ' : G ! GL(N; C ), such that for A 2 G,
the entries of the matrix '(A) are polynomials (independent of the choice
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of A) in the entries of A. For instance, one can check directly that the map

' : GL(2; C ) ! GL(3; C ) de�ned by

'

�
a b

c d

�
!

2
4 a2 2ab b2

ac ad+ bc bd

c2 2cd d2

3
5 (19)

preserves multiplication (and the identity element), and hence is a polynomial

representation of GL(2; C ) of degree 3. Let ' : GL(n; C ) ! GL(N; C ) be a

polynomial representation. If the eigenvalues of A are x1; : : : ; xn, then the

eigenvalues of '(A) are monomials in the xi's. For instance, in equation (19)
one can check that if x1 and x2 are the eigenvalues of A, then the eigenvalues

of '(A) are x21, x1x2, and x
2

2. The trace of '(A) (the sum of the eigenvalues)
is therefore a polynomial in the xi's which is a sum of N monomials. This

polynomial is called the character of ', denoted char('). For ' as in (19),
we have

char(') = x2
1
+ x1x2 + x2

2
:

Some of the basic facts concerning the characters of GL(n; C ) are the follow-
ing:

� Every polynomial representation (assumed �nite-dimensional) of the

group GL(n; C ) is completely reducible, i.e., a direct sum of irreducible
polynomial representations. These irreducible constituents are unique

up to equivalence.

� The characters of irreducible representations are homogeneous sym-

metric functions in the variables x1; : : : ; xn, and only depend on the

representation up to equivalence.

� The characters of inequivalent irreducible representations are linearly

independent.

The e�ect of these properties is that once we determine the character of
a polynomial representation ' of GL(n; C ), then there is a unique way to

write this character as a sum of irreducible characters. The representation

' is determined up to equivalence by the multiplicity of each irreducible
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character in char('). Hence we are left with the basic question of describing

the irreducible character of GL(n; C ). The main result is the following.

Fundamental theorem on the polynomial characters of GL(n; C ).

The irreducible characters of GL(n; C ) are in one-to-one correspondence with

the partitions � = (�1; : : : ; �n) with at most n parts. The irreducible character

s� = s�(x1; : : : ; xn) corresponding to � is given by

s�(x1; : : : ; xn) =
X
T

xT ;

where T ranges over all column-strict plane partitions of shape � and largest

part at most n, and where xT denotes the monomial

xT = xnumber of 1's in T
1

xnumber of 2's in T
2

� � � :

For instance, let n = 2 and let � = (2; 0) be the partition with just one
part equal to two (and no other parts). The column-strict plane partitions

of shape (2; 0) with largest part at most 2 are just 11, 21, and 22. Hence
(abbreviating s(2;0) as s2),

s2(x1; x2) = x2
1
+ x1x2 + x2

2
:

This is just the character of the representation de�ned by equation (19).
Hence this representation is one of the irreducible representations of GL(2; C ).

As another example, suppose that n = 3 and � = (2; 1; 0). The corre-

sponding column-strict plane partitions are

2 1 2 2 3 1 3 1 3 2 3 2 3 3 3 3
1 1 1 2 1 2 1 2 :

Hence

s�(x1; x2; x3) = x21x2 + x1x
2

2 + x21x3 + 2x1x2x3 + x22x3 + x1x
2

3 + x2x
2

3:

The fact that we have eight column-strict plane partitions in this case is

closely related to the famous \Eightfold Way" of particle physics. (The

corresponding representation of GL(3; C ), when restricted to SL(3; C ), is just
the adjoint representation of SL(3; C ).)
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The symmetric functions s�(x1; : : : ; xn) are known as Schur functions

(in the variables x1; : : : ; xn) and play an important role in many aspects of

representation theory, the theory of symmetric functions, and enumerative

combinatorics. In particular, they are closely related to the irreducible rep-

resentations of a certain �nite group, namely, the symmetric group Sk of all

permutations of the set f1; 2; : : : ; kg. This relationship is best understood by
a \duality" between GL(n; C ) and Sk discovered by Issai Schur (1875{1941).

Recall that we are regarding GL(n; C ) as acting on an n-dimensional

vector space V . Thus GL(n; C ) also acts on the kth tensor power V 
k of
V . On the other hand, the group Sk acts on V 
k by permuting tensor

coordinates. Schur's famous \double centralizer" theorem asserts that the
actions of GL(n; C ) and Sk centralize each other, i.e., every endomorphism

of V 
k commuting with the action of GL(n; C ) is a linear combination of the
actions of the elements of Sk, and vice versa. From this one can show that
the action of the group Sk � GL(n; C ) on V 
k breaks up into irreducible

constituents in the form

V 
k =
a
�

�
M� 
 F�

�
; (20)

where (a)
`

denotes a direct sum of vector spaces, (b) � ranges over all
partitions of k into at most n parts, (c) F� is the irreducible GL(n; C )-

module corresponding to �, andM� is an irreducible Sk-module. Thus when
k � n, � ranges over all partitions of k. The p(k) irreducibleSk-modulesM

�

are pairwise nonisomorphic and account for all the irreducible Sk-modules.

Hence the irreducible Sk-modules are naturally indexed by partitions of k.
Using the Schensted correspondence (or otherwise), it is easy to prove the

identity

(x1 + x2 + � � �+ xn)
k =

X
�

f�s�(x1; : : : ; xn);

where � ranges over all partitions of k and f� denotes as usual the number
of SYT of shape �. Comparing with equation (20) and using the fact that

the character of GL(n; C ) acting on V 
k is (x1 + � � � + xn)
k, we see that

dimM� = f�. Thus the f�'s for � a partition of k are the degrees of the

irreducible representations of Sk. Since the sum of the squares of the degrees

of the irreducible representations of a �nite group G is equal to the order

(number of elements) of G, we obtain equation (18) (with n replaced by k).
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We have only given the briefest glimpse of the connections between tableau

combinatorics and representation theory, but we hope that it gives the reader

with suÆcient mathematical background the 
avor of this subject.

5 Increasing and decreasing subsequences.

In this section we discuss an unexpected connection between the Schensted
correspondence and the enumeration of a certain class of permutations. This

connection was discovered by Schensted and was his reason for inventing his
famous correspondence. If w = a1a2 � � �an is a permutation of 1; 2; : : : ; n,
then a subsequence v of length k of w is a sequence of k distinct terms of

w appearing in the order in which they appear in w. In symbols, we have
v = ai1ai2 � � �aik , where i1 < i2 < � � � < ik. For instance, some subsequences
of the permutation 6251743 are 2573; 174; 6, and 6251743. A subsequence

b1b2 � � � bk of w is said to be increasing if b1 < b2 < � � � < bk, and decreasing if
b1 > b2 > � � � > bk. For instance, some increasing subsequences of 6251743 are

67; 257, and 3, while some decreasing subsequences are 6543; 654; 743; 61,
and 3.

We will be interestested in the length of the longest increasing and de-

creasing subsequences of a permutation w. Denote by i(w) the length of the
longest increasing subsequence of w, and by d(w) the length of the longest

decreasing subsequence. By careful inspection one sees for instance that

i(6251743) = 3 and d(6251743) = 4. It is intuitively plausible that there
should be some kind of tradeo� between the values i(w) and d(w). If i(w) is

small, say equal to k, then any subsequence of w of length k + 1 must con-
tain a pair of decreasing elements, so there are \lots" of pairs of decreasing

elements. Hence we would expect d(w) to be large. An extreme case occurs

when i(w) = 1. Then there is only one choice for w, namely, n; n� 1; : : : ; 1,
and we have d(w) = n.

How can we quantify the feeling that that i(w) and d(w) cannot both be

small? A famous result of Pal Erd}os (1913{1996) and George Szekeres (b.

30



1911), obtained in 1935, gives an answer to this question and was one of the

�rst results in the currently very active area of extremal combinatorics.

Erd}os-Szekeres Theorem. Let w be a permutation of 1; 2; : : : ; n, and let

p and q be positive integers for which n > pq. Then either i(w) > p or

d(w) > q. Moreover, this is best possible in the sense that if n = pq then we

can �nd at least one permutation w such that i(w) = p and d(w) = q.

An equivalent way to formulate the Erd}os-Szekeres theorem is by the in-

equality
i(w) � d(w) � n;

showing clearly that i(w) and d(w) cannot both be small. For instance, both

can't be less than
p
n, the square root of n.

After Erd}os and Szekeres proved their theorem, an extremely elegant
proof was given in 1959 by Abraham Seidenberg (1916{1988) based on a

ubiquitous mathematical tool known as the pigeonhole principle. This prin-
ciple states that if m + 1 pigeons 
y into m pigeonholes, then at least one

pigeonhole contains more than one pigeon. As trivial as the pigeonhole prin-
ciple may sound, it has numerous nontrivial applications. The hard part in
applying the pigeonhole principle is deciding what are the pigeons and what

are the pigeonholes.

We can now describe Seidenberg's proof of the Erd}os-Szekeres theorem.

Given a permutation w = a1a2 � � �an of 1; 2; : : : ; n, we de�ne numbers r1; r2,
: : : ; rn and s1; s2; : : : ; sn as follows. Let ri be the length of the longest in-

creasing subsequence of w that ends at ai, and similarly let si be the length

of the longest decreasing subsequence of w that ends at ai. For instance,
if w = 6251743 as above then s4 = 3 since the longest decreasing subse-

quences ending at a4 = 1 are 621 and 651, of length three. More gen-

erally, we have for w = 6251743 that (r1; : : : ; r7) = (1; 1; 2; 1; 3; 2; 2) and
(s1; : : : ; s7) = (1; 2; 2; 3; 1; 3; 4).

Key fact. The n pairs (r1; s1); (r2; s2); : : : ; (rn; sn) are all distinct.

To see why this fact is true, suppose i and j are numbers such that i < j

and ai < aj. Then we can append aj to the end of the longest increasing
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subsequence of w ending at ai to get an increasing subsequence of greater

length that ends at aj. Hence rj > ri. Similarly, if i < j and ai > aj, then

we get sj > si. Therefore we cannot have both ri = rj and si = sj, which

proves the key fact.

Now suppose n > pq as in the statement of the Erd}os-Szekeres theorem.

We therefore have n distinct pairs (r1; s1); (r2; s2); : : : ; (rn; sn) of positive

integers. If every ri were at most p and every si were at most q, then there

are only pq possible pairs (ri; si) (since there are at most p choices for ri
and at most q choices for si). Hence two of these pairs would have to be
equal. (This is where the pigeonhole principle comes in | we are putting

the \pigeon" i into the \pigeonhole" (ri; si) for 1 � i � n. Thus there are
n pigeons, where n > pq, and at most pq pigeonholes.) But if two pairs

are equal, then we contradict the key fact above. It follows that for some
i either ri > p or si > q. If ri > p then there is an increasing subsequence
of w of length at least p + 1 ending at ai, so i(w) > p. Similarly, if si > q

then d(w) > q, completing the proof of the main part of the Erd}os-Szekeres
theorem.

It remains to show that the result is best possible, as explained above. In

other words, given p and q, we need to exhibit at least one permutation w

of 1; 2; : : : ; pq such that i(w) = p and d(w) = q. It is easy to check that the

following choice of w works:

w = (q � 1)p+ 1; (q� 1)p+ 2; : : : ; qp; (q� 2)p+ 1; (q� 2)p+ 2; : : : ; (q � 1)p;

: : : ; 2p+ 1; 2p+ 2; : : : ; 3p; p+ 1; p+ 2; : : : ; 2p; 1; 2; : : : ; p: (21)

This completes the proof of the Erd}os-Szekeres theorem.

Though the Erd}os-Szekeres theorem is very elegant, we can ask for even

more information about increasing and decreasing subsequences. For in-

stance, rather than exhibiting a single permutation w of 1; 2; : : : ; pq satisfying
i(w) = p and d(w) = q, we can ask how many such permutations there are.

This much harder question can be answered by using an unexpected connec-
tion between increasing and decreasing subsequences on the one hand, and

the Schensted correspondence on the other.

There are two fundamental properties of the Schensted correspondence

that are needed for our purposes. Suppose we apply the Schensted correspon-
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dence to a permutation w = a1a2 � � �an of 1; 2; : : : ; n, getting two column-

strict plane partitions P and Q whose parts are 1; 2; : : : ; n. The �rst property

we need of the Schensted correspondence is a simple description of the �rst

row of P .

Property 1. Suppose that the �rst row of P is b1b2 � � � bk. Then bi is the

last (rightmost) term in w such that the longest decreasing subsequence of w

ending at that term has length i.

For instance, suppose w = 843716925. Then

P =
9 7 6 5
8 3 2
4 1

:

The �rst row of P is 9765. Consider the third element of this row, which is
6. Then 6 is the rightmost term of w for which the longest decreasing subse-
quence of w ending at that term has length three. Indeed, 876 is a decreasing

subsequence of length three ending at 6, and there is none longer. The terms
to the right of 6 are 9, 2, and 5. The longest decreasing subsequences ending

at these terms have length 1, 4, and 4, respectively, so 6 is indeed the right-
most term for which the longest decreasing subsequence ending at that term
has length three.

See the Box for a proof by induction of Property 1.

BOX. Proof of Property 1. Recall that w = a1a2 � � �an. We prove
by induction on j that after the Schensted algorithm has been applied to

a1a2 � � �aj, yielding a pair (Pj; Qj) of column-strict plane partitions, then

the ith entry in the �rst row of Pj is the rightmost term of the sequence
a1a2 � � �aj such that the longest decreasing subsequence ending at that term

has length i. Once this is proved, then set j = n to obtain Property 1.

The assertion is clearly true for j = 1. Assume true for j. Suppose

that the �rst row of Pj is c1c2 � � � cr. By the induction hypothesis, ci is the

rightmost term of the sequence a1a2 � � �aj such that the longest decreasing
subsequence ending at that term has length i. We now insert aj+1 into the

33



�rst row of Pj according to the rules of the Schensted algorithm. It will bump

the leftmost element ci of this row which is less than aj+1. (If there is no

element of the �rst row of Pj which is less than aj+1, then aj+1 is inserted at

the end of the row. We then set i = r+ 1, so that aj+1 is in all cases the ith

element of the �rst row of Pj+1.) We need to show that the longest decreasing

subsequence of the sequence a1a2 � � �aj+1 ending at aj+1 has length i, since

clearly aj+1 will be the rightmost element of a1a2 � � �aj+1 with this property

(since it is the rightmost element of the entire sequence).

If i = 1, then aj+1 is the largest element of the sequence a1a2 � � �aj+1, so
the longest decreasing subsequence ending at aj+1 has length one, as desired.

If i > 1, then there is a decreasing subsequence of a1a2 � � �aj of length i � 1
ending at ci�1. Adjoining aj+1 to the end of this subsequence produces a

decreasing subsequence of length i ending at aj+1. It remains to show that
there cannot be a longer decreasing subsequence ending at aj+1. If there
were, then there would be some term as in w to the left of aj+1 and larger

than aj+1 such that the longest decreasing subsequence ending at as has
length i. Thus when as is inserted into Ps�1 during the Schensted algorithm,
it becomes the ith element of the �rst row. It can only be bumped by terms

larger than as. In particular, when aj+1 is inserted into the �rst row, the
ith element is larger than as, which is larger than aj+1. This contradicts the

de�nition of the bumping procedure and completes the proof.

The second property we need of the Schensted correspondence was �rst

proved by Schensted. To describe this property we require the following
de�nition. If � is a partition, then the conjugate partition �0 of � is the

partition whose Young diagram is obtained by interchanging the rows and

columns of the Young diagram of �. In other words, if � = (�1; �2; : : :), then
the column lengths of the Young diagram of �0 are �1; �2; : : :. For instance,

if � = (5; 3; 3; 2) then �0 = (4; 4; 3; 1; 1), as illustrated in Figure 4.

Property 2. Suppose that when the Schensted correspondence is applied

to a permutation w = a1a2 � � �an, we obtain the pair (P;Q) of reverse SYT.

Let �w = anan�1 � � �a1, the reverse permutation of w. Suppose that when
the Schensted correspondence is applied to �w, we obtain the pair ( �P; �Q) of
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Figure 4: The Young diagram of a partition and its conjugate

reverse SYT. Then the shape of �P (or �Q) is conjugate to the shape of P (or

Q).

Actually, an even stronger result than Property 2 is true, though we don't

need it for our purposes. The reverse SYT �P is actually the transpose of P ,
obtained by interchanging the rows and columns of P . (The connection
between Q and �Q is more subtle and has led to much interesting work.) The

proof of Property 2 is too complicated for inclusion here, though it is entirely
elementary.

We now have all the ingredients to state the main result (due to Schen-

sted) on longest increasing and decreasing subsequences. If we apply the

Schensted correspondence to the permutation w and get a pair (P;Q) of

reverse SYT of shape � = (�1; �2; : : :), then Property 1 tells us that

d(w) = �1:

In words, the length of the longest decreasing subsequence of w is equal to the
largest part of � (the length of the �rst row of P ). Now apply the Schensted

correspondence to the reverse permutation �w, obtaining the pair ( �P; �Q) of
reverse SYT. When we reverse a permutation, increasing subsequences are

changed to decreasing subsequences and vice versa. In particular, d( �w) =

i(w). By Property 1, d( �w) is just the length of the �rst row of �P . By Property
2, the length of the �rst row of �P is just the length of the �rst column of P .

35



Thus i(w) = `(�), the number of parts of �.

We have shown that for a permutation w with i(w) = p and d(w) = q,

the shape � of the corresponding reverse SYT P (and Q) satis�es `(�) = p

and �1 = q. Hence the number An(p; q) of permutations w of 1; 2; : : : ; n with

i(w) = p and d(w) = q is equal to the number of pairs (P;Q) of reverse SYT

of the same shape �, where � is a partition of n with `(�) = p and �1 = q.

How many such pairs are there? Given the partition �, the number of choices

for P is just f�, the number of SYT of shape �. (Recall that the number of

SYT of shape � and the number of reverse SYT of shape � is the same, since
we can replace i by n+ 1� i.) Similarly there are f� choices for Q, so there

are
�
f�
�2

choices for (P;Q). Hence we obtain our main result on increasing
and decreasing subsequences:

Schensted's Theorem. The number An(p; q) of permutations w of 1; 2; : : : ; n

satisfying i(w) = p and d(w) = q is equal to the sum of all
�
f�
�2
, where � is

a partition of n satisfying `(�) = p and �1 = q.

Let us see how the Erd}os-Szekeres theorem follows immediately from
Schensted's theorem. If a partition � of n satis�es `(�) = p and �1 = q, then

n = �1 + �2 + � � �+ �p

� q + q + � � �+ q (p terms in all)

= pq:

Hence if n > pq, then either `(�) � p + 1 or �1 � q + 1. If we apply the

Schensted correspondence to a permutation w of 1; 2; : : : ; n then we get a

pair of reverse SYT of some shape �, where � is a partition of n. We have
just shown that `(�) � p+1 or �1 � q+1, so by Schensted's theorem either

i(w) � p+ 1 or d(w) � q + 1.

We can evaluate each f� appearing in Schensted's theorem by the hook-
length formula. Hence the theorem is most interesting when there are few

partitions � satisfying `(�) = p and �1 = q. The most interesting case occurs
when n = pq. The fact that there is at least one permutation satisfying

i(w) = p and d(w) = q (when n = pq) shows that the Erd}os-Szekeres theorem

is best possible (see equation (21)). Now we are asking for a much stronger
result | how many such permutations are there? By Schensted's theorem,
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we �rst need to �nd all partitions � of n such that `(�) = p and �1 = q.

Clearly there is only one such partition, namely, the partition with p parts

all equal to q. Hence for this partition � we have An(p; q) =
�
f�
�2
. We may

assume for de�niteness that p � q (since An(p; q) = An(q; p)). In that case

the hook-lengths of � are given by 1 (once), 2 (twice), 3 (three times), : : :, p

(p times), p + 1 (p times), : : :, q (p times), q + 1 (p� 1 times), q + 2 (p� 2

times), : : :, p + q � 1 (once). We �nally obtain the amazing formula (for

n = pq)

An(p; q) =

�
(pq)!

1122 � � � pp(p+ 1)p � � � qp(q + 1)p�1(q + 2)p�2 � � � (p+ q � 1)1

�2
:

For instance, when p = 4 and q = 6 we easily compute that

A24(4; 6) =

�
24!

11 22 33 44 54 64 73 82 91

�2
= 19; 664; 397; 929; 878; 416:

This large number is still only a small fraction :00000003169 of the total
number of permutations of 1; 2; : : : ; 24.

6 Reduced decompositions.

There is a remarkable and unexpected connection between standard Young

tableaux and the building up of a permutation by interchanging (transposing)
two adjacent entries. We begin with the identity permutation 1; 2; : : : ; n.
We wish to construct from it a given permutation as quickly as possible by

interchanging adjacent elements. By \as quickly as possible," we mean in

as few interchanges (called adjacent transpositions) as possible. This will

be the case if we always transpose two elements a; b appearing in ascending
order. For instance, one way to get the permutation 41352 from 12345 with
a minimum number of adjacent transpositions is as follows, where we have

marked in boldface the pair of elements to be interchanged:

12345! 13245! 13425! 14325! 41325! 41352: (22)
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Such sequences of interchanges are used in some of the sorting algorithms

studied in computer science (see Section 11), although there it is natural

to consider the reverse process whereby a list of numbers such as 41352 is

step-by-step converted to the \sorted" list 12345. Note that the �ve steps

in the sequence (22) are the minimum possible, since in the �nal permuta-

tion 41352 there are �ve pairs (i; j) out of order, i.e., i appears to the left

of j and i > j (namely, (4; 1); (4; 3); (4; 2); (3; 2), (5; 2)), and each adjacent

transposition can make at most one pair which was in order go out of order.

It would be ineÆcient to transpose a pair (a; b) that is in order in the �nal

permutation, since we would only have to change it back later. A pair of

elements of a permutation w that is out of order is called an inversion of
w. The number of inversions of w is denoted inv(w) and is an important

invariant of a permutation, in a sense measuring how \mixed up" the per-
mutation is. For instance, inv(41352) = 5, the inversions being the �ve pairs
(4; 1); (4; 3); (4; 2); (3; 2); (5; 2).

A sequence of adjacent transpositions that converts the identity permu-
tation to a permutation w in the smallest possible number of steps (namely,
inv(w) steps) is called a reduced decomposition of w. Equation (22) shows

one reduced decomposition of the permutation w = 41352, but there are
many others. We can therefore ask for the number of reduced decomposi-

tions of w. We denote this number by r(w). The reader can check that
every permutation of the numbers 1; 2; 3 has only one reduced decomposi-
tion, except that r(321) = 2. The two reduced decompositions of 321 are

123! 213! 231! 321 and 123! 132! 312! 321.

The remarkable connection between r(w) and SYT's is the following. For
each permutation w, one can associate a small collection Y (w) of Young

diagrams (with repetitions allowed) whose number of squares is inv(w), such

that r(w) is the sum of the number of SYT whose shapes belong to Y (w). We

are unable to explain here the exact rule (based on a variant of the Schensted
correspondence) for computing Y (w), but we will discuss the most interesting
special case. We also will not explain exactly what is meant by a \small"

collection, but in general its number of elements will be much smaller than

r(w) itself.

Example. Here are a few examples of the collection Y (w).
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(a) If w = 41352 (the example considered in equation (22)), then Y (w)

consists of the single diagram

of shape (3; 1; 1). Since there are six SYT of this shape (computed from

the hook-length formula (17) or by direct enumeration), it follows that

there are six reduced decompositions of 41352.

(b) If w = 654321 then again Y (w) is given by a single diagram, this time

:

Hence

r(w) = f (5;4;3;2;1)

=
15!

15 � 34 � 53 � 72 � 9
= 292; 864:

(c) If w = 321654, then Y (w) consists of the diagrams whose shapes are

(writing for instance 42 as short for (4; 2)) 42, 411, 33, 321, 321, 3111,

222, 2211. Note that the shape 321 appears twice. We get

r(w) = f 42 + f 411 + f 33 + 2f 321 + f 3111 + f 222 + f 2211

= 9 + 10 + 5 + 2 � 16 + 10 + 5 + 9

= 80:

Clearly the formula for r(w) will be the simplest when Y (w) consists of
a single partition �, for then we have r(w) = f�, given explicitly by (17). A
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simple though surprising characterization of all permutations for which Y (w)

consists of a single partition is given by the next result. Such permutations

are called vexillary after the Latin word vexillum for \
ag," because of a

relationship between vexillary permutations and certain polynomials known

as 
ag Schur functions.

Vexillary theorem. Let w = w1w2 � � �wn be a permutation of 1; 2; : : : ; n.

Then Y (w) consists of a single partition � if and only if there do not exist

a < b < c < d such that wb < wa < wd < wc. Moreover, if �i is the number

of j's for which i < j and wi > wj, then the parts of � are just the nonzero

�i's.

As an illustration of the above theorem, let w = 526314. One sees by in-
spection thatw satis�es the conditions of the theorem. We have (�1; : : : ; �6) =

(4; 1; 3; 1; 0; 0). Hence � = (4; 3; 1; 1) and r(w) = f (4;3;1;1) = 216.

It is immediate from the above result that all the permutations of 1; : : : ; n
for n � 3 are vexillary, and that there is just one nonvexillary permutation

of 1; 2; 3; 4, namely, 2143. It has been computed that if v(n) denotes the
number of vexillary permutations of 1; 2; : : : ; n then v(5) = 103 (out of 120
permutations of 1; 2; : : : ; n in all), v(6) = 513 (out of 720), v(7) = 2761 (out

of 5040), and v(8) = 15767 (out of 40320). Simple methods for computing
and approximating v(n) have been given by JulianWest (b. 1964) and Amitai

Regev (b. 1940), and an explicit formula for v(n) was found by Ira Gessel (b.
1951).

There is one class of vexillary permutations of particular interest. These

are the permutations w0 = n; n�1; : : : ; 1, for which � = (n�1; n�2; : : : ; 1).
There is an elegant bijection between the SYT of shape (n�1; n�2; : : : ; 1) and
the reduced decompositions of w0, due to Paul Henry Edelman (b. 1956) and

Curtis Greene (b. 1944). Begin with an SYT of shape (n � 1; n � 2; : : : ; 1)

and write the number i at the end of the ith row, with n written at the

bottom of the �rst column. We will call the numbers outside the diagram
exit numbers. An example is given by:
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5

7

5

2

1

4

9

8

3

3

10

4

2

6 1

Now take the largest number in the SYT (in this case 10) and let it \exit"
the diagram to the southeast (between the 2 and 3). Whenever a number

exits the diagram, transpose the two exit numbers that it goes between.
Hence we now have:

5

7

5

2

1

4

9

8

3

2

4

3

6 1

In the hole left by the 10, move the largest of the numbers directly to the

left or above the hole. Here we move the 8 into the hole, creating a new hole.

Continue to move the largest number directly to the left or above a hole into

the hole, until such moves are no longer possible. Thus after exiting the 10,

we move the 8, 3, and 1 successively into holes, yielding:
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5

7

5

2

4

9

3

1

2

8

4

3

6 1

Now repeat this procedure, �rst exiting the largest number in the diagram
(ignoring the exit numbers), then transposing the two exit numbers between

which this largest number exits, and then �lling in the holes by the same
method as before. Hence for our example 9 exits, 5 �lls in the hole left by 9,

and 2 �lls in the hole left by 5, yielding:

5

7

2

2

5

3

1

4

8

4

3

6 1

Continue in this manner until all the numbers are removed from the
original SYT. The remarkable fact is that the exit numbers, read from top to

bottom, will now be n; n� 1; : : : ; 1. We began with the exit numbers in the

order 1; 2; : : : ; n, and each exit from the diagram transposed two adjacent exit
numbers. The size (number of entries) of the original SYT is equal to n(n�
1)=2, which is the number of inversions of the permutation n; n � 1; : : : ; 1.
Hence we have converted 1; 2; : : : ; n to n; n� 1; : : : ; 1 by n(n� 1)=2 adjacent

transpositions, thereby de�ning a reduced decomposition of w0. Edelman

42



and Greene prove that this algorithm yields a bijection between SYT of

shape (n� 1; n� 2; : : : ; 1) and reduced decompositions of w0. For the above

example, the reduced decomposition is given by 12345! 13245! 13425!
14325! 14352! 41352! 41532! 45132! 45312! 45321! 54321.

7 Tilings.

The �nal enumerative topic we will discuss concerns the partitioning of some
planar or solid shape into smaller shapes. Such partitions are called tilings.

The combinatorial theory of tilings is connected with such subjects as geom-
etry, group theory, and logic, and has applications to statistical mechanics,
coding theory, and many other topics. Here we will be concerned with the

purely enumerative question of counting the number of tilings.

The �rst signi�cant result about the enumeration of tilings was due to

the Dutch physicist Pieter Willem Kasteleyn (1924{1996) and independently
to the British physicist Harold Neville Vazeille Temperley (b. 1915) and the
British-born physicist Michael Ellis Fisher (b. 1931). Motivated by work re-

lated to the adsorption of diatomic molecules on a surface and other physical
problems, they were led to consider the tiling of a chessboard by dominos
(or dimers). More precisely, consider an m� n chessboard B, where at least

one of m and n is even. A domino consists of two adjacent squares (where
\adjacent" means having an edge in common). The domino can be oriented

either horizontally or vertically. Thus a tiling of B by dominos will require

exactly mn=2 dominos, since there are mn squares in all, and each domino
has two squares. The illustration below shows a domino tiling of a 4 � 6

rectangle.
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Let N(m;n) denote the number of domino coverings of an m � n chess-
board. For instance, N(2; 3) = 3, as shown by:

We have in fact that

N(2; n) = Fn+1; (23)

where Fn+1 denotes a Fibonacci number, de�ned by the recurrence

F1 = 1; F2 = 1; Fn+1 = Fn + Fn�1:

To prove equation (23), we need to show that N(2; 1) = 1, N(2; 2) = 2,
and N(2; n + 2) = N(2; n + 1) + N(2; n). Of course it is trivial to check

that N(2; 1) = 1 and N(2; 2) = 2. In any domino tiling of a 2 � (n + 2)

rectangle, either the �rst column consists of a vertical domino, or else the

�rst two columns consist of two horizontal dominos. In the former case we
are left with a 2 � (n + 1) rectangle to tile by dominos, and in the latter
case a 2 � n rectangle. There are N(2; n + 1) ways to tile the 2 � (n + 1)

rectangle and N(2; n) ways to tile the 2 � n rectangle, so the recurrence

N(2; n+ 2) = N(2; n+ 1) +N(2; n) follows, and hence also (23).

The situation becomes much more complicated when dealing with larger

rectangles, and rather sophisticated techniques such as the \transfer-matrix
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method" or the \PfaÆan method" are needed to produce an answer. The

�nal form of the answer involves trigonometric functions (see Box), and it is

not even readily apparent (without suÆcient mathematical background) that

the formula gives an integer. It follows, however, from the subject known

as Galois theory that N(2n; 2n) is in fact the square or twice the square of

an integer, depending on whether n is even or odd. For instance, N(8; 8) =

12; 988; 816 = 36042, while N(6; 6) = 6728 = 2 � 582. It is natural to ask

for a combinatorial reason why these numbers are squares or twice squares.

In other words, in the case when n is even we would like a combinatorial

interpretation of the number M(2n) de�ned by N(2n; 2n) = M(2n)2, and

similarly when n is odd. While a formula for M(2n) was known making
it obvious that it was an integer (so not involving trigonometric functions),

it was only in 1992 that William Carl Jockusch (b. 1967) found a direct
combinatorial interpretation of M(2n). In 1996 Mihai Adrian Ciucu (b.
1968) found an even simpler interpretation ofM(2n) as the number of domino

tilings of a certain region Rn, up to a power of two. The region Rn is de�ned
to be the board consisting of 2n�2 squares in the �rst three rows, then 2n�4
squares in the next two rows, then 2n� 6 squares in the next two rows, etc.,

down to two squares in the last two rows. All the rows are left-justi�ed. The
board R4 is illustrated in Figure 5.

If T (n) denotes the number of domino tilings of Rn, then Ciucu's formula
states that

N(2n; 2n) = 2nT (n)2:

If n is even, say n = 2r, then N(2n; 2n) = (2rT (n))2, while if n is odd,
say n = 2r + 1, then N(2n; 2n) = 2(2rT (n))2, so we recover the result that

N(2n; 2n) is a square or twice a square depending on whether n is even or

odd.

BOX. The formula for the number N(2m; 2n) of domino tilings of a

2m� 2n chessboard:

N(2m; 2n) = 4mn

mY
s=1

nY
t=1

�
cos2

s�

2m+ 1
+ cos2

t�

2n+ 1

�
:
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Figure 5: The board R4.

Although the formula for the number of domino tilings of a chessboard

is rather complicated, there is a variant of the chessboard for which a very
simple formula for the number of domino tilings exists. This new board
is called an Aztec diamond, and was introduced by Noam David Elkies (b.

1966), Gregory John Kuperberg (b. 1967), Michael Je�rey Larsen (b. 1962),
and James Gary Propp (b. 1960). Their work has stimulated a 
urry of

activity on exact and approximate enumeration of domino tilings, as well as

related questions such as the appearance of a \typical" domino tiling of a
given region.

The Aztec diamond AZn of order n consists of two squares in the �rst

row, four squares in the second row beginning one square to the left of the
�rst row, six squares in the third row beginning one square to the left of the

second row, etc., up to 2n squares in the nth row. Then re
ect the diagram
created so far about the bottom edge and adjoin this re
ected diagram to

the original. For instance, the Aztec diamond AZ3 looks as follows:
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Let az(n) be the number of domino tilings of the Aztec diamond AZn.
For instance, AZ1 is just a 2� 2 square, which has two domino tilings (both

dominos horizontal or both vertical). Hence az(1) = 2. It's easy to compute
by hand that az(2) = 8, and a computer reveals that az(3) = 64 = 26,
az(4) = 1024 = 210, az(5) = 32768 = 215, etc. The evidence quickly becomes

overwhelming for the conjecture that

az(n) = 2
1

2
n(n+1): (24)

It is rather mysterious why Aztec diamonds seem to be so much more nicely

behaved regarding their number of domino tilings than the more natural
m� n chessboards.

A proof of the conjecture (24) is the main result of Elkies et al. mentioned

above. They gave four di�erent proofs, showing the surprising connections
between Aztec diamonds and various other branches of mathematics. (For

instance, it is not a coincidence that 2
1

2
n(n+1) is the degree of an irreducible

representation of the group GL(n + 1; C ).) Of course a combinatorialist
would like to see a purely combinatorial proof, and indeed Elkies et al. gave

such proofs. Other combinatorial proofs have been since given by Ciucu
and Propp. We will sketch the fourth proof of Elkies et al., called a proof

by domino shu�ing. The domino shu�ing procedure we describe will seem

rather miraculous, and there are many details to verify to see that it actually
works as claimed. Nevertheless, we hope that our brief description will take
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some of the mystery out of equation (24).

We �rst color the squares of the Aztec diamond AZn black and white in

the usual chessboard fashion, with the �rst (leftmost) square in the top row

colored white. Here is a tiling of AZ3 with the chessboard coloring shown.

Certain pairs of dominos in the tiling will form a 2 � 2 square with the
top left square colored black. Remove all such pairs of dominos (if any exist).

For the tiling of AZ3 shown above there is one such pair, and after removing
it we get the following tiling:
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Let us call a tiling T of AZn with the 2 � 2 squares removed as just

described a reduced tiling of AZn, and call T the reduction of the original

(complete) tiling. Note that if we remove k 2 � 2 squares from a complete

tiling to get a reduced tiling, then there are 2k ways to tile the 2� 2 holes.

(Each hole can be tiled either by two horizontal or two vertical dominos.) In

other words, given a reduced tiling T of AZn with k 2� 2 holes, there are 2k

corresponding complete tilings of AZn whose reduction is T .

Consider a reduced tiling of AZn. Each domino will have one white square

and one black square. There are four possible colorings and orientations of
a domino, shown in the illustration below. With each of these four possi-

ble colored dominos we associate a direction: up, down, right, and left, as
indicated below by an arrow.

We can enlarge the Aztec diamond AZn to AZn+1 by adding squares

around the boundary. Add one square at the beginning and one square at
the end of each row, and two squares at the top and bottom. The next

illustration shows the earlier reduced tiling of AZ3, with an arrow placed

on each domino according to its coloring and orientation, and the boundary
of new squares to give AZ4. We have also numbered each domino for later

purposes.

49



1

2 3 4

5 6

7

8 9

10

Now move each domino one unit in the direction of its arrow. This is the
shu�ing operation referred to in the name \domino shu�ing." Let k be the

number of 2� 2 squares removed before shu�ing. It can be shown that (a)
the dominos do not overlap after shu�ing, and (b) the squares of AZn+1 that
are not covered by dominos can be uniquely covered with exactly n + k + 1

2 � 2 squares. The next �gure shows the dominos after shu�ing (with the
same numbers as before), together with the leftover �ve 2�2 squares (holes).
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We now complete the partial tiling of AZn+1 to a complete tiling by
putting two dominos in each 2 � 2 hole. Since there are two ways to tile

a 2 � 2 square, there are 2n+k+1 ways to tile all n + k + 1 of the 2 � 2
squares. Therefore we have associated 2n+k+1 tilings of AZn+1 with each k-
hole reduced tiling of AZn. The amazing fact is that every tiling of AZn+1

occurs exactly once in this way! In other words, given a tiling of AZn+1, we
can reconstruct which of the dominos were shu�ed from a reduced tiling of

AZn and thus also the n+ k + 1 2� 2 holes that were left over. Since every

k-hole reduced tiling T of AZn is the reduction of 2k complete tilings of AZn,
and since T corresponds to 2n+k+1 tilings of AZn+1, we obtain the recurrence

az(n+ 1) = 2n+1az(n):

The unique solution to this recurrence satisfying az(1) = 2 is easily seen (for

instance by mathematical induction) to be

az(n) = 2
1

2
n(n+1);

proving equation (24).
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Figure 6: The hexagonal board H(2; 3; 3)

8 Tilings and plane partitions.

We have encountered several examples of unexpected connections between

seemingly unrelated mathematical problems. This is one of the features of
mathematics that makes it so appealing to its practitioners. In this sec-
tion we discuss another such connection, this time between tilings and plane

partitions. Other surprising connections will be treated in later sections.

The tiling problem we will be considering is very similar to the problem

of tiling an m� n chessboard with dominos. Instead of a chessboard (whose

shape is a rectangle), we will be tiling a hexagon. Replacing the squares of

the chessboard will be equilateral triangles of unit length which �ll up the

hexagon, yielding a \hexagonal board." Let H(r; s; t) denote the hexagonal

board whose opposite sides are parallel and whose side lengths (in clockwise
order) are r; s; t; r; s; t. Thus opposite sides of the hexagon have equal length

just like opposite sides of a rectangle have equal length. Figure 6 shows the

hexagonal board H(2; 3; 3) with its 42 equilateral triangles. In general, the

hexagonal board H(r; s; t) has 2(rs+ rt+ st) equilateral triangles.
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Instead of tiling with dominos (which consist of two adjacent squares), we

will be tiling with pieces which consist of two adjacent equilateral triangles.

We will call these pieces simply rhombi, although they are really only special

kinds of rhombi. Thus the number of rhombi in a tiling of H(r; s; t) is rs +

rt+ st. The rhombi can have three possible orientations (compared with the

two orientations of a rectangle):

Here is a typical tiling of H(2; 3; 3)

LW

F

F

RW

RW

This picture gives the impression of looking into the corner of an r�s� t

box in which cubes are stacked. The brain will alternate between di�erent
interpretations of this cube stacking. To be de�nite, we have labelled by F

the 
oor, by LW the left wall, and by RW the right wall. Shading the rhombi

according to their orientation heightens the impression of a cube stacking,
particularly if the page is rotated slightly counterclockwise:
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Regarding the 
oor as a 3�2 parallelogram �lled with six rhombi, we can

encode the cube stacking by a 3� 2 array of numbers which tell the number
of cubes stacked above each 
oor rhombus:

2 3

0 2

20

Rotate this diagram 45Æ counterclockwise, erase the rhombi, and \straighten
out," giving the following array of numbers:

3 2 2
2 0 0 :

This array is nothing more than a plane partition whose number of rows

is at most r, whose number of columns is at most s, and whose largest
part is at most t (where we began with the hexagonal board H(r; s; t))! This

54



correspondence between rhombic tilings ofH(r; s; t) and plane partitions with

at most r rows, at most s columns, and with largest part at most t is a

bijection. In other words, given the rhombic tiling, there is a unique way to

interpret it as a stacking of cubes (once we agree on what is the 
oor, left

wall, and right wall), which we can encode as a plane partition of the desired

type. Conversely, given such a plane partition, we can draw it as a stacking

of cubes which in turn can be interpreted as a rhombic tiling.

An immediate corollary of the amazing correspondence between rhombic

tilings and plane partitions is an explicit formula for the number N(r; s; t)
of rhombic tilings of H(r; s; t). For this number is just the number of plane

partitions with at most r rows, at most s columns, and with largest part at
most t. If we set x = 1 in the left-hand side of MacMahon's formula (14)

then it follows that we just get N(r; s; t). If we set x = 1 in the right-hand
side then we get the meaningless expression 0=0. However, if we write

[i] = 1� xi = (1� x)(1 + x+ � � �+ xi�1);

then the factors of 1 � x cancel out from the numerator and denominator
of the right-hand side of (14). Therefore substituting x = 1 is equivalent to
replacing [i] by the integer i, so we get the astonishing formula

N(r; s; t) =

(1 + t)(2 + t)2 � � � (r + t)r(r + 1 + t)r � � � (s+ t)r(s+ 1 + t)r�1(s+ 2 + t)r�2 � � � (r + s� 1 + t)

1 � 22 � 33 � � � rr(r + 1)r � � � sr(s+ 1)r�1(s+ 2)r�2 � � � (r + s� 1)
:

9 Combinatorics and Topology.

On �rst acquaintance combinatorics may seem to have a somewhat di�erent

\
avor" than the mainstream areas of mathematics, due mainly to what
mathematicians call \discreteness." Nevertheless, combinatorics is fortunate

to have many beautiful and fruitful links with older and more established
areas, such as algebra, geometry, probability and topology. We will now

move on to discuss one such connection, perhaps the most surprising one,

namely that with topology. First, however, let us say a few words about
what mathematicians mean by discreteness.
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In mathematics the words \continuous" and \discrete" have technical

meanings that are quite opposite. Typical examples of continuous objects are

curves and surfaces in 3-space (or, suitably generalized, in higher-dimensional

spaces). A characteristic property is that each point on such an object is

surrounded by some \neighborhood" of other points, containing points that

are in a suitable sense \near" to it. The area within mathematics that deals

with the study of continuity is called topology. The characteristic property

of discrete objects, on the other hand, is that each point is \isolated" |

there is no concept of points being \near." Combinatorics is the area that

deals with discreteness in its purest form, particularly in the study of �nite

structures of various kinds.

Several fascinating connections between the continuous and the discrete

are known in mathematics | in algebra, geometry and analysis. A quite
recent development of this kind, the one we want to talk about here, is that
ideas and results from topology can be put to use to solve certain combi-

natorial problems. We will soon exemplify this with two problems coming
from computer science. However, �rst we will discuss in greater detail the
connection between topology and combinatorics that will be used.

Let us take as our example of a topological space the torus, a 2-dimensional
surface that is well known in ordinary life in the form of an inner-tube, or as

the surface of a doughnut (see Figure 7).

b

a

Figure 7: The torus

There is a way to \encode" a space such as the torus into a �nite set sys-
tem, called a triangulation. It works as follows. Draw (curvilinear) triangles

on the torus so that each edge of a triangle is also the edge of some other
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triangle, and the 2 endpoints of each edge are not the pair of endpoints of

any other edge. The triangles should cover the torus so that each point on

the torus is in exactly one of the triangles, or possibly in an edge where two

triangles meet or at a corner where several triangles meet. We can think

of this as cutting the rubber surface of an inner tube into small triangular

pieces. Figure 8 shows one way to do this using 14 triangles. In this �gure

the torus is cut up and 
attened out | to get back the original torus one

has to roll this 
attened version up and glue together the two sides marked

1-2-3-1, and then wrap around the cylinder obtained and glue together the

two end-circles marked 1-4-5-1. Note that the two circles 1-2-3-1 and 1-4-5-1

in Figure 8 correspond to the circles marked a and b that are drawn with
dashed lines on the torus in Figure 7.

76

5

44

1321

5

1321

Figure 8: A triangulated torus

Having thus cut the torus apart we now have a collection of 14 triangles.
The corners in Figure 8 where triangles come together are called vertices,

and we can represent each triangle by its 3 vertices. Thus each one of our 14

triangles is replaced by a 3-element subset of f1,2,3,4,5,6,7g. For instance,

f1,2,4g and f3,4,6g denote two of the triangles. The full list of all 14 triangles
is

124 126 135 137 147 156 234

235 257 267 346 367 456 457
(25)
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A family of subsets of a �nite set which is closed under taking subsets

(i.e., if A is a set in the family and B is obtained by removing some elements

from A then also B is in the family) is called a simplicial complex . Thus,

our fourteen 3-element sets and all their subsets form a simplicial complex.

An important fact is that just knowing the simplicial complex | a �nite

set system | we can fully reconstruct the torus! Namely, knowing the 14

triples we can manufacture 14 triangles with vertices marked in corresponding

fashion and then glue these triangles together according to the blueprint of

Figure 8 (using the vertex labels) to obtain the torus. To imagine this you
should think of the triangles as being 
exible (e.g., made of rubber sheet) so

that there are no physical obstructions to their being bent and glued together.
Also, the torus obtained may be di�erent in size or shape from the original

one (smaller, larger, deformed), but these di�erences are irrelevant from the
point of view of topology.

To sum up the discussion: The simplicial complex coming from a trian-

gulation is a complete encoding of the torus as a topological object. Every
property of the torus that topology can have anything to say about is also a
property of this �nite set system!

Why would topologists want to use such an encoding? The main rea-
son is that they are interested in computing certain so called invariants of

topological spaces, such as the \Betti numbers" which we will soon comment
on. The spaces they consider (such as the torus) are geometric objects with
in�nitely many points, on which it is usually hard to perform concrete com-

putations. An associated simplicial complex, on the other hand, is a �nite

object which is easily adapted to computation (except possibly for size rea-
sons). Topological invariants depend only on the space in question, but their

computation may depend on choosing a triangulation or other \combinato-
rial decomposition". The part of topology that develops this connection is

known as combinatorial topology. It was initiated by the great French math-

ematician Jules Henri Poincar�e (1854{1912) in the last years of the 1800's
and greatly developed in the �rst half of this century. Eventually the subject

took on a more and more algebraic 
avor and in the 1940's the area changed
name to algebraic topology.

The Betti numbers of a space are topological invariants that can be said
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to measure the number of \independent holes" of various dimensions. It is

impossible to give the full technical de�nition within the framework of this

article. Let it suÆce to say that the de�nition depends on certain algebraic

constructions and to give some examples. If T is a d-dimensional topological

space then there are d+ 1 Betti numbers

�0(T ); �1(T ); :::; �d(T );

which are nonnegative integers. Once we have a triangulation of a topological

space the computation of Betti numbers is a matter of some very simple (in

principle) linear algebra.

For instance, the d-dimensional sphere has Betti numbers (0; :::; 0; 1), re-

ecting the fact that it has exactly one d-dimensional \hole" (its interior)
and no holes of other dimensions. The torus has Betti numbers (0; 2; 1) be-

cause there are two essentially di�erent 1-dimensional holes (corresponding
to the circles a and b in Figure 7) and one 2-dimensional hole (the interior).

Note that the two circles a and b are genuine \holes" in the sense that they
cannot be continuously deformed to single points within the torus, and that
they are \di�erent" holes since one cannot be continuously deformed into the

other.

The concept of a 0-dimensional hole is perhaps not so clear on an intuitive
level, but having �0 = 0 means that the space hangs together in one piece (is

connected), and in general �0(T )+1 is the number of connected components
of the space T . (Note to specialists: Our �i(T )'s are really the reduced

Betti numbers of T , di�ering from the \ordinary" Betti numbers only in that
�0(T ) + 1 rather than �0(T ) is the number of connected components of T .)

We have seen that �nite set systems are of use in topology as encodings

of topological spaces. But the connection between topological spaces and

simplicial complexes opens up a two-way street. What if the mathematics

we are doing deals primarily with �nite set systems, as is often the case in

combinatorics? For instance, say that a combinatorial problem we are dealing
with involves the fourteen 3-element sets listed in (25). Could the properties

of the associated topological space | the torus | be of any relevance? For

instance, could its Betti numbers (measuring the number of \holes" in the
space) have something useful to say about the set system as such? We
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will show that this may indeed be the case, and this is in fact one of the

cornerstones for the \topological method" in combinatorics.

The idea to use topological reasoning in combinatorics is quite old but had

a somewhat unfortunate start. It seems to have �rst occurred in connection

with a famous problem of Euler. The following con�guration is called a

Graeco-Latin square of order n: An n � n-matrix of ordered pairs (a; b) of

numbers a and b from 1; 2; :::; n such that the �rst entries a are distinct in

every row and column, the second entries b are distinct in every row and

column, and all n2 possible pairs occur. For instance, here is a Graeco-Latin
square of order 3:

1; 1 2; 2 3; 3

2; 3 3; 1 1; 2

3; 2 1; 3 2; 1:

Euler stated without proof in his paper \Recherches sur une esp�ece de
carr�es magique" from 1782 that such con�gurations cannot exist for n =

6; 10; 14; 18; :::. His claim was proven correct for n = 6 by Gaston Tarry
(1843{1913) in 1901. In 1922 Harris F. MacNeish (18??{19??) published
a paper in Annals of Mathematics supposedly proving Euler's claim for all

remaining values of n. His argument, which was based on topology, was
unfortunately incorrect. In fact, subsequent research has shown that Euler's
claim itself is false, except for the single case of n = 6 !

After this unsuccessful start it took a long time before the idea resurfaced
| topological proofs for combinatorial results have come to the fore only in

the last two decades. Let us now go on to see a couple of concrete examples.

BOX: Borsuk and combinatorics

The Polish mathematician Karol Borsuk (1905{1982) made some fun-
damental contributions to the early development of topology. In 1933 he
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published a paper entitled (in translation) \Three theorems about the n-

dimensional euclidean sphere". That paper contains, among other wonderful

things, a famous theorem and a famous open problem. Let us state them

(within this box we will assume familiarity with the topological terminology

used).

Borsuk's Theorem. If the k-dimensional sphere is covered by k+1 closed

sets, then one of these sets must contain a pair of antipodal points.

Borsuk's Problem. Is it true that every set of diameter one in k-dimensional

real space Rk can be partitioned into at most k+1 sets of smaller diameter?

This work of Borsuk has interacted with combinatorics in a remarkable

way. In 1978 L�aszl�o Lov�asz (b. 1948) solved a diÆcult combinatorial problem
| the \Kneser Conjecture" from 1955 | by using Borsuk's theorem. Then,

in 1992 the debt to topology was repaid when Je�ry Ned Kahn (b. 1950)
and Gil Kalai (b. 1955) solved Borsuk's problem using some results from
pure combinatorics. By stating the relevant results on the combinatorial

side we hope to give a small glimpse of these interactions, which are quite
unexpected.

The answer to Borsuk's problem is de�nitely \yes" when k = 1, the

statement then comes down to dividing a line segment of length 1 into two
shorter segments, which is clearly possible. It was also long known that the

statement is true for k = 2 and k = 3, and it was generally believed that
the statement is true for all dimensions k | this became known as Borsuk's
conjecture.

It therefore came as a great surprise that the answer to Borsuk's prob-

lem is actually \no", contrary to what \everyone" had believed for nearly
60 years. But one has to go to very high dimensions (k � 1; 000) to �nd

counterexamples with the Kahn-Kalai method. The problem is still open for
k = 4.

The combinatorial result from which the solution to Borsuk's problem
follows is this 1981 theorem of Peter Frankl (b. 19??) and Richard Michael

Wilson (b. 1945).

61



Frankl-Wilson Theorem. Let k be a power of a prime number, and let F

be a family of 2k-element subsets of f1,2,. . . ,4kg such that no two members

of F have k elements in common. Then F has at most 2 �
�
4k�1

k�1

�
members.

The Kneser conjecture | now a theorem of Lov�asz | is the following

statement:

Lov�asz' Theorem. If the n-element subsets of a (2n + k)-element set are

partitioned into k + 1 classes, then some class will contain a pair of disjoint

n-element sets.

The details of how this conclusion is derived from Borsuk's theorem, as
well as the argument for solving Borsuk's problem using the Frankl-Wilson

theorem, must unfortunately be left aside. See the suggested reading for
further information.

10 Complexity of graph properties.

A major theme in theoretical computer science is to estimate the complex-

ity of computational tasks. By \complexity" is here meant the amount of
time and of computational resources needed. By constructing algorithms one

shows that a task can be done in a certain number of steps. It is often the

more diÆcult part to show that there is no \faster" way, i.e. requiring fewer
steps.

Examples of this will be given in this and the following section. We

begin by considering algorithms that test whether graphs have a certain
given property P. For example, P could be the property of being connected,

meaning that you can get from any node to any other node by walking along
a path of edges. The left graph in Figure 9 is connected whereas the right

one is disconnected, since there is no way to get from nodes 1, 2 or 3 to nodes

4 or 5.
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Figure 9: A connected and a disconnected graph

Connectedness is a very basic property of graphs which can be decided

at a glance on small examples represented as a drawing. But say you have
a graph with 1 million nodes, coming perhaps from a communications net-
work or a chip design, which is presented only as a list of edges (adjacent

pairs of nodes) | then it is not quite so clear what to do if one wants to
decide whether the graph is connected, making eÆcient use of computational

resources. Among the interesting questions one can ask is whether it is pos-
sible to decide connectedness of the graph without checking for all possible
pairs of nodes (there are nearly 500 billion of them) whether they are edges

of the graph or not? If this were so it could conceivably lead to valuable
saving of time and resources.

A basic general question to ask then is this: For a given property P of
graphs, is there some algorithm that decides for every graph G whether it
has property P without knowing for every pair of nodes whether they span

an edge of G or not? If this is not the case, i.e. if every P -testing algorithm
must for at least some graph have complete knowledge about all its edges,
then P is said to be an evasive property.

For instance, connectedness is an evasive property. To see this we can
argue as follows. Imagine that we have a computer running a program that

tests graphs for connectedness. The graphs to be tested, whose nodes we may
assume are labeled 1; 2; :::; n, are presented to the computer in the form of an

n� n upper-triangular matrix of zeros and ones, with a 1 entry in row i and

column j, for i < j, if (i; j) is an edge of the graph and a 0 entry otherwise.
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For instance, here are the matrices representing the graphs in Figure 9:

� 1 0 0 0 � 1 1 0 0

� 1 0 1 � 1 0 0

� 0 1 � 0 0

� 1 � 1

� �

The computer is allowed to inspect only one entry of this matrix at a time,

and what we want to show is that for some graph it must in fact inspect

all of them. To �nd such a worst-case graph we can imagine playing the
following game with the computer. Say that instead of deciding on the
graph in advance, we write the zeros and ones (specifying its nonedges and

edges) into the matrix only at the last moment, as the computer demands
to inspect them. Say furthermore that we do this according to the following

strategy (designed to keep the computer making as many queries as possible):
When the computer goes to inspect the (i; j) entry of the matrix (according
to whatever algorithm it is using), then

� write 0 into position (i; j) if it is not possible to conclude from the
partial information known to the computer at that time | including
this last 0 | that the graph is disconnected,

� otherwise, write 1 into position (i; j).

It is an elementary but somewhat tricky argument to show that this
strategy will force the computer to inspect all entries of the matrix before

it can decide whether the corresponding graph is connected or not. We will
outline a proof, assuming that the reader understands what is meant by a
proof by �nite induction.

The crucial step will be to prove the following statement:
Suppose that at some stage 1 is written into position (i; j). Let A be the set

of nodes that are at that stage connected to i by 1-marked edges, and let B

be the set of nodes connected to j by 1-marked edges. Then all possible edges

between nodes in A [B have been inspected at that stage.

(Clari�cation: \at that stage" refers to the con�guration existing at the time
when when 1 is assigned to the position/edge (i; j), namely, at that time
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some other edges have already been inspected and are marked with 0 or 1,

while the remaining have not yet been inspected.)

Note that A \ B = �, and that jA [ Bj � 2 since i 2 A and j 2 B.

The statement is clearly true if jA[Bj = 2, and we proceed by induction on

jA[Bj, that is, the number of elements of A[B. Suppose that jA[Bj > 2.

Since 1 (and not 0) is written into position (i; j) that means that there is

some partition C [D = f1; 2; : : : ; ng into nonempty disjoint subsets C and

D such that i 2 C , j 2 D and all possible edges fc; dg with c 2 C , d 2 D

and fc; dg 6= fi; jg are already marked with 0. Clearly, we must have A � C

and B � D, so in particular all edges between a node in A and a node in B

have already been inspected. Also, all edges between two nodes both in A

have by the induction assumption been inspected, and similarly for B. This

covers all possible edges between nodes in A [ B and the claim follows.

Suppose now that connectedness/disconnectedness can be decided after
inspection of k matrix entries, and that k is the minimum such number.

According to our strategy for writing 0 or 1, the outcome can never be
that the graph is disconnected. Also, if the kth entry is 0 and the graph
is connected we have a contradiction, since then the information needed to

conclude connectedness would have been available already before the kth
entry was inspected. So, the kth entry is 1, and since the conclusion is that

the graph is connected the claim above implies that all other entries have
already been inspected before the kth one. This proves that connectedness
is an evasive graph property.

It has been decided for many graph properties whether they are evasive. It

turns out that among the evasive ones are many that are monotone, meaning
that if the property holds for some graph then it will also hold if more edges

are added. For instance, connectedness is an example of a monotone property.
Mounting evidence from work in the late 1960's by several researchers led to

the following conjecture.

Evasiveness Conjecture. Every monotone nontrivial graph property is

evasive.

By \nontrivial" is here meant that there is at least one graph that has the
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property and one that doesn't. Since monotonicity is usually completely triv-

ial to verify whereas evasiveness is not, this conjecture | if true | would

simplify deciding evasiveness for many graph properties. Tedious case-by-

case arguments, such as the ones we carried out for the property of connect-

edness, would not be needed.

The best general result known to date on this topic is the following theo-

rem of Je�ry Kahn, Michael Ezra Saks (b. 1956) and Dean Grant Sturtevant

(b. 1955) from 1984:

Kahn{Saks{Sturtevant Theorem. The evasiveness conjecture is true

for graphs on pk nodes, for any prime number p and integer k � 1.

This veri�es the conjecture for in�nitely many values of n, the number of
nodes, but leaves it open when n is the product of at least two distinct primes.

Thus, the smallest values of n left open are 6; 10; 12; 14; 15; :::; however the
case of n = 6 was also veri�ed by Kahn et al. The general conjecture remains
open, beginning with the case n = 10.

The proof of Kahn et al. makes surprising use of topology. The key
idea is to view a monotone graph property for graphs on n vertices as a
simplicial complex with a high degree of symmetry, to whose associated space

a topological �xed point theorem can be applied. Here is how.

We will keep in mind some particular monotone graph property P and

consider graphs on the nodes 1; 2; :::; n. Such a graph is speci�ed by the pairs
(i; j) of nodes that are connected by an edge. Let us take the set of these

pairs as the ground set for a set family �P
n , whose members are the edge-sets

of graphs not having property P. The set family �P
n is closed under taking

subsets, since monotonicity implies that removal of edges from a graph that
doesn't have property P cannot produce a graph having that property.

Let us illustrate the idea for the case n = 4, taking as our monotone
property connectedness. There are 6 possible edges in a graph on the nodes

1; 2; 3; 4; see Figure 10.

The simplicial complex �conn

4
of disconnected graphs on four vertices is

shown in Figure 11.
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Figure 10: The 6 edges spanned by 4 nodes

14

34

24

13 23

12

Figure 11: The complex of disconnected graphs on 4 nodes

In the rubber-sheet model depicted it consists of 4 triangles and 3 edges

(curved line segments) glued together. To understand this picture the reader

should think how to translate the vertices, edges and triangles of �conn

4
into

disconnected graphs. For instance, the edge between 14 and 23 in Figure 11

corresponds to the disconnected graph
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Observe in Figure 11 that the space represented by the complex �conn

4
has

many \holes" | in the terminology used before this means that �conn

4
has

some nonzero Betti numbers. It turns out to be a general fact, not hard to
prove, that if the property P is not evasive then �P

n is acyclic, meaning that

all Betti numbers of �P
n are equal to zero.

There are several theorems in topology to the e�ect that certain mappings

f of an acyclic space to itself must have �xed points, i.e. points x such that

f(x) = x. The best known one | one of the classics of topology | is

Luitzen Egbertus Jan Brouwer's (1881{1966) theorem from 1904, which says
that every continuous mapping of an n-dimensional ball to itself has a �xed

point. The one needed for the present application is a �xed point theorem

of Robert Oliver (b. 1949) from 1975, which (stripped of some technical

details) says that for certain groups G of symmetry mappings of an acyclic

simplicial complex � to itself there is a point x in the associated space such
that f(x) = x for all mappings f in G.

The complex �P
n of a monotone graph property has a natural group of
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symmetries, namely the symmetric group Sn of all permutations of the set

of nodes 1; 2; :::; n. Permuting the nodes amounts to a relabeling (node i

gets relabeled f(i), etc.), and it is clear that such a relabeling will not a�ect

whether the graph in question has property P. Therefore every permutation

of 1; 2; :::; n induces a self-symmetry of the complex �P
n of graphs not having

property P.

The pieces needed for the proof of Kahn et al. are now at hand. Here is

how they argued.

Suppose P is a monotone property for graphs on n nodes that is not

evasive. Then, as was already mentioned, the associated complex �P
n is

acyclic. If furthermore n = pk then due to some special properties of prime-
power numbers (the existence of �nite �elds) one can construct a subgroup

G of Sn having the special properties needed for Oliver's �xed point theorem.
Hence there is a point x in the space associated to �P

n such that f(x) = x for
all permutations f in G. However, this means that there is a nonempty set

A in the complex �P
n (that is, a graph with edge-set A not having property

P ) such that f(A) = A for all f in G. Since G is transitive (meaning that if
u and v are two vertices of �P

n then u = f(v) for some mapping f in G), A

must consist of all vertices of �P
n ; that is, A is the complete graph. We have

obtained that the complete graph on nodes 1; 2; : : : ; n does not have property

P , and since P is monotone that means that no graph on 1; 2; : : : ; n can have
property P , so P is trivial.

The argument shows that for monotone graph properties P on a prime-

power number of nodes nonevasive implies trivial, or which is logically the
same: nontrivial implies evasive.

Viewing a graph property (such as connectedness) as a simplicial complex

and submitting it to topological study may seem strange. One can wonder if
this point of view is of any value other than | by remarkable coincidence |

for the evasiveness conjecture. It has recently become clear that this is indeed
the case. Namely, the complexes �conn

n of disconnected graphs on n vertices

have arisen and play a role in the work of Victor Anatol'evich Vassiliev (b.

1956) on knot invariants. Also some other monotone graph properties have
naturally presented themselves as simplicial complexes in other mathematical

contexts.
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11 Complexity of sorting and distinctness.

The following is a very basic situation studied in complexity theory. A string

of real numbers x1; x2; : : : ; xn is given. A computer is asked to decide some

property of the sequence or to restructure it using only pairwise comparisons.

This means that the computer is allowed to learn about the input sequence

only by inspecting pairs xi and xj and deciding whether xi > xj, xi <

xj or xi = xj. The question then is: How many such comparisons must

the computer make in the worst case when using the best algorithm? This
number, as a function of n, is called the complexity of the problem.

The following notation is used to state such results. To say that the
complexity is �(f(n)), where f(n) is some function, means that there exist
constants c1 and c2 such that

c1 � f(n) < complexity < c2 � f(n):

While this notation doesn't give the exact numerical value of the complexity

(which is often hard, if not impossible, to determine) it reveals its order of
growth, which is what is usually taken as the main indication if a problem is
computationally easy or hard. In the following formulas the function \logn"

will frequently appear. Readers not familiar with the logarithm function can
take this to mean roughly the number of digits needed to write the number
n in base 10, so that for instance log 1997 � 4.

Here are some basic and well-known examples.

1. Sorting. To rearrange the n numbers increasingly xi1 � xi2 � � � � �
xin requires �(n logn) comparisons.

2. Median. To �nd j such that xj is \in the middle", meaning that half

of the xi's are less than or equal to xj and half of the xi's are greater

than or equal to xj, requires �(n) comparisons. In fact, it has been

shown that 2n comparisons are needed and that 3n comparisons suÆce.

3. Distinctness. To decide whether all entries xi are distinct, that is

whether xi 6= xj when i 6= j, requires �(n logn) comparisons.
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The problem we wish to discuss, which was only recently resolved, is a

generalization of the distinctness problem. Namely,

k-equal problem: for k � 2, decide whether some k entries are equal, that

is, can we �nd i1 < i2 < � � � < ik such that xi1 = xi2 = � � � = xik?

For example, are there nine equal entries in the following list of numbers?

2479137468584871395519674234615946331486772955924362854117836972581932

Answer: Yes, there are nine copies of the number \4". Are there ten equal
entries? Answer: No. If pairwise comparisons are the only type of operation

allowed, how should one go about settling these questions in an eÆcient
manner, and how many comparisons would be needed?

Here are a few immediate observations. If k = 2 the problem reduces to
the distinctness problem, so the complexity is �(n logn). At the other end of
the scale, if k > n

2
the complexity is �(n), because we can argue as follows.

The median xj can be found using 3n comparisons. If there are k > n

2

equal entries then the median must be one of them. Thus after comparing
xj with the other n � 1 entries xi we gain enough information to conclude

whether there are some k entries that are equal. This procedure requires in
all 4n�1 comparisons. On the other hand it is easy to see that at least n�1

comparisons are needed in the worst case, so there are both upper and lower
bounds of the form \constant times n" to the complexity.

We have seen that the complexity of the k-equal problem decreases from

�(n logn) to �(n) when the parameter k grows from 2 to above n

2
, so the

k-equal problem seems to get easier the larger k gets. The exact form of this

relationship is given in the following result from 1992 of Anders Bj�orner (b.
1947), L�aszl�o Lov�asz and Andrew Chi-Chih Yao (b. 1946).

Theorem. The complexity of the k-equal problem is �(n log 2n

k
).

The upper bound is obtained via a partial sorting algorithm based on re-
peated median-�nding. It generalizes what was described for the case k > n

2
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above. We shall leave it aside.

The lower bound | proving that at least n log 2n

k
comparisons are needed

(up to some constant) by every algorithm in the worst case | is the diÆcult

and mathematically more interesting part. The proof uses a combination of

topology and combinatorics. A detailed description would take us too far

a�eld, but we will attempt to get some of the main ideas across.

Let us look at the situation from a geometric point of view. Each equation

xi1 = xi2 = � � � = xik determines an (n� k + 1)-dimensional linear subspace
of Rn , the n-dimensional space consisting of all n-tuples (x1; x2; : : : ; xn) of
real numbers xi. The k-equal problem is from this point of view to determine

whether a given point x = (x1; x2; : : : ; xn) lies in at least one such subspace,
or | which is the same | lies in the union of all the subspaces xi1 = xi2 =

� � � = xik .

Removal of linear subspaces disconnects Rn . For instance, removal of a
plane (a 2-dimensional subspace) cuts R3 into two pieces, whereas removal

of a line (a 1-dimensional subspace) leaves another kind of \hole". These
are precisely the kinds of holes that are measured by the topological Betti
numbers (as was discussed in Section 9). Going back to the general situation,

it seems clear that if all the subspaces xi1 = xi2 = � � � = xik are removed from
Rn then lots of holes of di�erent dimensions will be created. This must mean

that the sum of Betti numbers of Mn;k, the part of space R
n that remains

after all these subspaces have been removed, is a large number:

�(Mn;k) = �0(Mn;k) + �1(Mn;k) + � � �+ �n(Mn;k):

The idea now is that if the space Mn;k is complicated topologically, as
measured by this sum of Betti numbers, then this ought to imply that it

is computationally diÆcult to determine whether a point x lies on it. This

turns out to be true in the following quantitative form.

Fact 1. The complexity of the k-equal problem is at least log3 �(Mn;k).

Here log3 denotes logarithm to the base 3, which di�ers by a constant factor

from the logarithm to the base 10 that was mentioned earlier.
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So, now the problem has been converted into a topological one | to com-

pute or estimate the sum of Betti numbers �(Mn;k). This can be done via a

formula of Robert Mark Goresky (b. 1950) and Robert Duncan MacPherson

(b. 1944), which expresses these Betti numbers in terms of some �nite sim-

plicial complexes associated to certain partitions. To get further we need to

introduce a few more concepts from combinatorics.

We began this paper by discussing partitions of numbers, and we shall

return once more to the ubiquitous concept of partitions. Here we need,

however, the notion of partitions of sets. A partition of a �nite set A is a
way of breaking it into smaller pieces, namely a collection of pairwise disjoint

subsets whose union is A. (None of these subsets is allowed to be empty |
in other words, all the subsets have at least one element.) For instance, here

are the 15 partitions of the set f1; 2; 3; 4g:

1234, 12|34, 13|24, 14|23, 1|234, 2|134, 3|124, 4|123,
12|3|4, 13|2|4, 14|2|3, 23|1|4, 24|1|3, 34|1|2,

1|2|3|4

In the following we will use f1; 2; : : : ; ng as the ground set and for �xed k

(an integer between 2 and n) consider the collection of all partitions of this

set that have no parts of sizes 2; 3; : : : ; k� 1. Denote this collection by �n;k.
For instance, �4;2 is the collection of all partitions of f1; 2; 3; 4g (there are

no forbidden parts), while �4;3 is the following subcollection (now parts of
size 2 are forbidden):

1234, 1|234, 2|134, 3|124, 4|123, 1|2|3|4

There is a natural way to compare set partitions, saying that partition �

is less than partition � (written � � �) if � is obtained from � by further

partitioning its parts. This way we get an order structure on the set �n;k,

which can be illustrated in a diagram. Figure 12 shows the order diagram of
�4;2 and Figure 13 shows that of �4;3.

These diagrams are to be understood so that a partition � is less than a

73



134 2

1234

123 4 13 24 12 34 14 23 234 1

12 3 4 13 2 4 14 2 3 23 1 4 24 1 3 34 1 2

1 2 3 4

124 3

Figure 12: �4;2

234 1

1234

1 2 3 4

123 4 124 3 134 2

Figure 13: �4;3
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partition � if and only if there is a downward path from � to � in the order

diagram, corresponding to further breaking up of �'s parts.

Now, consider the M�obius function (see the BOX) computed over the

poset �n;k. Let �n;k denote the value that the M�obius function attains at

the partition with only one part, which is at the top of the order diagram.

For example, computation as demonstrated in the BOX over the posets in

Figures 12 and 13 shows that �4;3 = 3 and �4;2 = �6.

We can now return to the discussion of the k-equal problem. Where we
left o� was with the question of how to estimate the sum of Betti numbers
�(Mn;k). The formula of Goresky and MacPherson mentioned earlier implies,

by an argument involving among other things the topological signi�cance of
the M�obius function, the following relation:

Fact 2. �(Mn;k) � j�n;kj.

Putting Facts 1 and 2 together, the complexity question for the k-equal
problem has been reduced to the problem of showing that the combinatorially

de�ned numbers j�n;kj grow suÆciently fast. For this we turn to the method
of generating functions, already introduced in the early sections on counting
number partitions. Certain recurrences for the numbers �n;k lead, when

interpreted at the level of generating functions, to the following formula:

exp

 X
n�1

�n;k

xn

n!

!
= 1 + x +

x2

2!
+ � � �+

xk�1

(k � 1)!
: (26)

To make sense of this you have to imagine inserting the series y =
P

n�1
�n;k

xn

n!

into the exponential series exp(y) =
P

n�0

yn

n!
, and then expanding in pow-

ers of x. Also, since �n;k has so far been de�ned only for k � n we should
mention that we put �n;k = 0 for 1 < n < k and �1;k = 1.

From this relation between the numbers �n;k and the polynomial on the

right-hand-side (which is a truncation of the exponential series) we can ex-

tract the following explicit information.

Fact 3. Let �1; �2; : : : ; �k�1 be the complex roots of the polynomial 1 + x +
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x2

2!
+ � � �+ xk�1

(k�1)!
. Then

�n;k = �(n� 1)!
�
��n1 + ��n2 + � � �+ ��nk�1

�
:

For instance, if k = 2 there is only one root �1 = �1, and we get

�n;2 = (�1)n�1(n� 1)!:

Also, in this case the formula (26) specializes to

exp

 X
n�1

(�1)n�1
xn

n

!
= 1 + x;

which is well-known to all students of the calculus in the equivalent form

log(1 + x) =
X
n�1

(�1)n�1
xn

n
:

If k = 3 there are 2 roots �1 = �1+ i and �2 = �1� i, where i =
p
�1, and

using some formulas from elementary complex algebra we get

�n;3 = �(n� 1)!
�
(�1 + i)�n + (�1� i)�n

�
= �(n� 1)! 21�

n
2 cos

3�n

4
: (27)

We have come to a point where we know on the one hand from Facts 1
and 2 that

the complexity of the k-equal problem � log3 j�n;kj,

and on the other that the M�obius numbers �n;k are given in terms of the roots

�1; �2; : : : ; �k�1 as stated in Fact 3. It still remains to show that the numbers

j�n;kj are large enough so that log3 j�n;kj produces the desired complexity
lower bound. For this reason it comes as a chilling surprise to discover that

these numbers are not always very large. In fact, formula (27) shows that

�n;3 = 0; for n = 6; 10; 14; 18; 22; : : : :
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It can also be shown that �2k;k = 0 for all odd numbers k.

So, we are not quite done | but almost! With a little more work it can

be shown from the facts presented so far that j�n;kj is, so to say, \suÆciently
large for suÆciently many n" (for �xed k). With this, and a \monotonicity

argument" to handle the cases where j�n;kj itself is not large but nearby

values are, it is possible to wrap up the whole story and obtain the initially

stated lower bound of the form \constant times n log 2n

k
".

Let us mention in closing that it is possible to work with Betti numbers
the whole way, never passing to the M�obius function as described here. This
route is a bit more complicated but results in a better constant for the lower

bound.

BOX: The M�obius function.

The M�obius function is one of the most important tools of algebraic com-

binatorics. It assigns a very signi�cant integer to every �nite \poset". This
word is an abbreviation which stands for \partially ordered set"; for sim-

plicity we will assume that all posets considered have a bottom and a top
element. Figure 14 shows a poset of eight elements with bottom element \a"
and top element \h".

The M�obius function �(x) is recursively de�ned for any �nite poset as
follows: Put �(x0) = 1 for the bottom element x0 of the poset, then require

that

�(x) = �
X
y<x

�(y)

for all other elements x. This formula means that we are to de�ne �(x) so

that when we sum �(y) for all y less than or equal to x the resulting sum
equals zero. This can clearly be done as long as one knows the values �(y) for

all elements y less than x. The reader can see how this recursive de�nition

works by computing the M�obius function of the poset in Figure 14, starting
from the bottom. We get recursively:
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Figure 14: A small poset

�(a) = 1, by de�nition,

�(b) = ��(a) = �1,
�(c) = ��(a) = �1,
�(d) = ��(a) = �1,
�(e) = ��(a) = �1,
�(f) = ��(a)� �(b)� �(c)� �(d) = �1 + 1 + 1 + 1 = 2,
�(g) = ��(a)� �(d) = �1 + 1 = 0,

�(h) = ��(a)� �(b)� �(c)� �(d)� �(e)� �(f)� �(g)
= �1 + 1 + 1 + 1 + 1� 2� 0 = 1.

Figure 15 shows the same poset with computed M�obius function values.

The M�obius function has its origin in number theory, where it was intro-
duced by August Ferdinand M�obius (1790{1868). (M�obius is best known to

nonmathematicians for his eponymous connection with the \M�obius strip."
The M�obius strip itself was well-known long before M�obius, but M�obius was

one of the �rst persons to systematically investigate its mathematical prop-

erties.) The posets relevant to number theory are subsets of the positive
integers ordered by divisibility. For instance, see the divisor diagram of the

number \60" in Figure 16. A calculation based on this diagram, analogous
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Figure 15: Values of the M�obius function

to the one we just carried out over Figure 14, will show that �(60) = 0. In

the case of the classical M�obius function of number theory there is however a
faster way to compute. Namely, for n > 1 one has that �(n) = 0 if the square
of some prime number divides n, and that otherwise �(n) = (�1)k where k

is the number of prime factors in n. Hence, for example: �(60) = 0 since
22 = 4 divides 60; and �(30) = �1 since we have the prime factorization
30 = 2 � 3 � 5 with an odd number of prime factors.

The M�obius function is very important in number theory. Let it suf-
�ce to mention | for those who have the background to know what we are

referring to | that both the Prime Number Theorem and the Riemann Hy-

pothesis (considered by many to be the most important unsolved problem in

all of mathematics) are equivalent to statements about the M�obius function.

Namely, letting M(n) =
Pn

k=1
�(k), it is known that

Prime Number Theorem() lim
n!1

M(n)

n
= 0;

Riemann Hypothesis() jM(n)j � n1=2+�; for all � > 0 and all suÆciently large n.
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Figure 16: The divisors of \60".

The M�obius function is an indispensable tool in enumerative combina-
torics because it can be used to \invert" summations over a partially ordered

index set. Here is a statement of the \M�obius inversion formula" in a special
case. If a function f : P ! Z from a poset P to the integers is related to
another function g : P ! Z by the partial summation formula

f(x) =
X
y�x

g(y);

then the value g(x0) at the bottom element x0 of P can be expressed in terms

of f via the formula

g(x0) =
X
y2P

�(y)f(y):

The M�obius function also has a topological meaning, which is the reason

it turns up in \Fact 2" of this section. The connection is as follows. Let P be

a poset with bottom element b and top element t. De�ne the set family �(P )

to consist of all chains (meaning: totally ordered subsets) x1 < x2 < � � � < xk
in P = P nfb; tg, meaning P with b and t removed. Then �(P ) is a simplicial
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complex (since a subset of a chain is also a chain), so as discussed in Section

9 there is an associated topological space.

For instance, let P be the divisor poset of the number \60" shown in

Figure 16. Then P = P n f1; 60g has the following twelve maximal chains

2 | 4 | 12

2 | 4 | 20

2 | 6 | 12

2 | 6 | 30

2 | 10 | 20
2 | 10 | 30
3 | 6 | 12

3 | 6 | 30
3 | 15 | 30
5 | 10 | 20

5 | 10 | 30
5 | 15 | 30

As was explained in Section 9 these twelve triples of the simplicial complex
should be thought of as describing twelve triangles that are to be glued

together along common edges. This gives the topological space shown in
Figure 17 | a 2-dimensional disc.

So, what does all this have to do with the M�obius function? The relation
is this. Let �i(P ) be the ith Betti number of the simplicial complex �(P ),

and let �(P ) denote the value that the M�obius function attains at the top

element of P . Then,

�(P ) = �0(P )� �1(P ) + �2(P )� �3(P ) + � � � : (28)

For instance, the space depicted in Figure 17 is a disc. The important

thing here is that this space has no holes of any kind. Hence, all Betti

numbers �i(P ) are zero, implying via formula (28) that �(P ) = 0. This

\explains" topologically why �(60) = 0, a fact we already knew from simpler

considerations. On the other hand, if P is the divisor diagram of \30" (which
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Figure 17: The simplicial complex of proper divisors of \60".

can be seen as a substructure in Figure 16), then �(P ) is the circle 2 | 6
| 3 | 15 | 5 | 10 | 2 (a substructure in Figure 17). This circle has

a one-dimensional hole, so �1(P ) = 1. All other Betti numbers are zero,
hence formula (28) gives that �(30) = �1, another fact we have already

encountered.

12 Face numbers of polytopes.

Among the many results of Euler that have initiated fruitful lines of develop-
ment in combinatorics, the one that is perhaps most widely known is \Euler's

formula" for 3-dimensional polytopes from 1752. It goes as follows.

A 3-polytope P (or, 3-dimensional convex polytope, to be more precise) is

for a mathematician a bounded region of space obtained as the intersection

of �nitely many halfspaces (and not contained in any plane). For the layman
it can be described as the kind of solid body you can create from a block
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of cheese with a �nite number of plane cuts with a knife. For instance,

take the ordinary cube shown in Figure 18 | it can be cut out with six

plane cuts. The cube is one of the �ve Platonic solids: tetrahedron, cube,

octahedron, dodecahedron and icosahedron, known and revered by the Greek

mathematicians in antiquity.

Figure 18: The cube.

A polytope that is dear to all combinatorialists is the \permutohedron",
shown in Figure 19. Its 24 corners correspond to the 24 = 4 � 3 � 2 � 1 permu-
tations of the set f1; 2; 3; 4g. The precise rule for constructing the permu-
tohedron and for labelling its vertices with permutations is best explained

in 4-dimensional space and will be left aside. Note that the pairs of permu-
tations that correspond to edges of the permutohedron are precisely pairs
that di�er by a switch of two adjacent entries, such as \2143 | 2134" or

\3124 | 3214". Thus, edge-paths on the boundary of the permutohedron
are precisely paths consisting of such \adjacent transpositions", giving geo-

metric content to the topic of reduced decompositions, that was discussed in

Section 6.

The boundary of a 3-polytope is made up of pieces of dimension 0, 1 and

2 called its faces. These are the possible areas of contact if the polytope is

made to touch a plane surface, such as the top of a table. The 0-faces are
the corners, or vertices, of the polytope. The 1-faces are the edges, and the

2-faces are the 
at surfaces, such as the six squares bounding the cube. The
permutohedron has fourteen 2-faces, six of which are 4-sided and eight are

6-sided.

83



4132

4123 1423

1243

1432

13424312

3412
3142

3421
3124

1324 2134

1234

2143

2314

32143241

Figure 19: The permutohedron.

Euler's formula has to do with counting the number of faces of dimensions
0, 1 and 2. Namely, let fi be the number of i-dimensional faces.

Euler's Formula. For any 3-polytope:

f0 � f1 + f2 = 2:

Let us verify this relation for the cube and the permutohedron, see Figures
18 and 19.

f0 f1 f2 f0 � f1 + f2

Cube 8 12 6 8� 12 + 6 = 2

Permutohedron 24 36 14 24� 36 + 14 = 2

From a modern mathematical point of view there is no diÆculty in de�n-
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ing higher-dimensional polytopes. Thus, a d-polytope is a full-dimensional

bounded intersection of closed halfspaces in Rd . Such higher-dimensional

polytopes have taken on great practical signi�cance in the last �fty years

because of their importance for linear programming. The term \linear pro-

gramming" refers to techniques for optimizing a linear function subject to

a collection of linear constraints. The linear constraints cut out a feasible

region of space, which is a d-polytope (possibly unbounded in this case).

The combinatorial study of the structure of polytopes has interacted very

fruitfully with this applied area.

It can be shown that the same de�nition of the faces of a polytope works

also in higher dimensions (namely \the possible areas of contact if the poly-
tope is made to touch a plane surface in Rd"), and that there are only �nitely

many faces of each dimension 0; 1; : : : ; d�1. Thus we may de�ne the number
fi of i-dimensional faces for i = 0; 1; : : : ; d � 1. These numbers for a given
polytope P are collected into a string

f(P ) = (f0; f1; : : : ; fd�1);

called the f -vector of P . For instance, we have seen that f(cube) = (8; 12; 6)
and f(permutohedron) = (24; 36; 14).

Is there an Euler formula for f -vectors in higher dimensions? This ques-

tion was asked early on, and by the mid-1800's some mathematicians had
discovered the following beautiful fact.

Generalized Euler Formula. For any d-polytope:

f0 � f1 + f2 � � � �+ (�1)d�1fd�1 = 1 + (�1)d�1:

However, the early discoverers experienced serious diÆculty with proving

this formula. It is generally considered that the �rst complete proof was
given around the year 1900 by Henri Poincar�e.

Having seen this formula it is natural to ask: What other relations, if

any, do the face numbers fi satisfy? This question opens the doors to a huge

and very active research area, pursued by combinatorialists and geometers.
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Many equalities and inequalities are known for various classes of polytopes,

such as upper bounds and lower bounds for the numbers fi in terms of the

dimension d and the number f0 of vertices.

The boldest hope one can have for the study of f -vectors of polytopes is

to obtain a complete characterization. By this is meant a reasonably simple

set of conditions by which one can recognize if a given string of numbers is

the f-vector of a d-polytope or not. For instance, one may ask whether

(14; 89; 338; 850; 1484; 1834; 1604; 971; 380; 76) (29)

is the f -vector of a 10-polytope? We �nd that

14� 89 + 338� 850 + 1484� 1834 + 1604� 971 + 380� 76 = 0;

in accordance with the generalized Euler formula. Had this failed we would

know for sure that we are not dealing with a true f -vector, but agreeing with
the Euler formula is certainly not enough to draw any conclusion. What
other \tests" are there, strong enough to tell for sure whether this is the

f -vector of a 10-polytope?

An answer is known for dimension 3; namely, (f0; f1; f2) is the f -vector

of a 3-polytope if and only if

(i) f0 � f1 + f2 = 2;

(ii) f0 � 2f2 � 4;
(iii) f2 � 2f0 � 4:

However, already the next case of 4 dimensions presents obstacles that with

present methods are unsurmountable. Thus, no characterization of f -vectors

of general polytopes is known. But if one narrows the class of polytopes to

the so called \simplicial" ones there is a very substantial result that we will

now formulate.

A d-simplex is a d-polytope which is cut out by exactly d+1 plane cuts.
In other words, it has d + 1 maximal faces, which is actually the minimum

possible for a d-polytope. A 1-simplex is a line segment, a 2-simplex is a
triangle, a 3-simplex is a tetrahedron, and so on; see Figure 20. In general,

a d-simplex is the natural d-dimensional analogue of the tetrahedron.
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Figure 20: A d-simplex, d = 1; 2; 3.

A d-polytope is said to be simplicial if all its faces are simplices. It comes

to the same to demand that all maximal faces are (d � 1)-simplices. For
instance, a 3-polytope is simplicial if all 2-faces are triangular, as in Figure
21; so the octahedron and icosahedron are examples of simplicial polytopes

but the cube and permutohedron are not. If a polytope is simplicial then its

Figure 21: A simplicial 3-polytope.

faces form a simplicial complex in the sense de�ned in Section 9. The class

of simplicial polytopes is special from some points of view, but nevertheless

very important in polytope theory. For instance, if one seeks to maximize the

number of i-faces of a d-polytope with n vertices, the maximum is obtained

simultaneously for all i by certain simplicial polytopes.

In 1971 Peter McMullen (b. 1942) made a bold conjecture for a characteri-

zation of the f -vectors of simplicial polytopes. A key role in his proposed con-
ditions was played by certain \g-numbers," so his conjecture became known
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as the \g-conjecture." In 1980 two papers, one by Louis Joseph Billera (b.

1943) and Carl William Lee (b. 1954) and one by Richard Peter Stanley (b.

1944), provided the two major implications that were needed for a proof of

the conjecture. Their combined e�orts thus produced what is now known as

the \g-theorem." To state the theorem we need to introduce an auxiliary

concept.

By a multicomplex we mean a nonempty collection M of monomials in

indeterminates x1; x2; : : : ; xn such that ifm 2M and m0 dividesm then m0 2
M . Figure 22 shows the multicomplex M = f1; x; y; z; x2; xy; yz; z2; x2y; z3g
ordered by divisibility.

yx z

xyx yz z

x

2 2

2y z 3
2

4

3

11

Figure 22: A multicomplex.

An M-sequence is a sequence (1; a1; a2; a3; : : :) such that each ai is the

number of monomials of degree i in some �xed multicomplex. For instance,
the M -sequence coming from the multicomplexM in Figure 22 is (1; 3; 4; 2).

A multicomplex and an M -sequence can very well be in�nite, but only �nite

ones will concern us here. If some zeros are added or removed at the end of
a �nite M -sequence it remains an M -sequence.

The \M" in M -sequence is mnemonic both for \multicomplex" and for

\Macaulay", in honor of Francis Sowerby Macaulay (1862-1937) who �rst

seems to have studied the concept in a paper from 1927. Macaulay's purpose

was entirely algebraic (to characterize so called Hilbert functions of certain

graded algebras), but the underlying combinatorics of his investigations has
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turned out to have far-reaching rami�cations.

We are now ready to formulate the g-theorem, characterizing the f -

vectors of simplicial d-polytopes. Let Æ be the greatest integer less than

or equal to d=2, and let Md = (mi;j) be the matrix with (Æ + 1) rows and d

columns and with entries

mi;j =

�
d+ 1� i

d� j

�
�
�

i

d� j

�
; for 0 � i � Æ; 0 � j � d� 1:

Here we are using the binomial coeÆcients, de�ned by�
n

k

�
=

n!

k! � (n� k)!
;

where n! = n � (n � 1) � (n � 2) � � �2 � 1, and 0! = 1. (The factorial n! was
already used in connection with equation (17), but we repeat the de�nition
here for the reader's convenience.)

For example, with d = 10 we get

m2;8 =

�
10 + 1� 2

10� 8

�
�
�

2

10� 8

�
=

9!

2! � 7!
�

2!

2! � 0!
= 36� 1 = 35;

and the whole matrix is

M10 =

0
BBBBBB@

11 55 165 330 462 462 330 165 55 11
1 10 45 120 210 252 210 120 45 9
0 1 9 36 84 126 126 84 35 7

0 0 1 8 28 56 70 55 25 5

0 0 0 1 7 21 34 31 15 3

0 0 0 0 1 5 10 10 5 1

1
CCCCCCA

These matricesMd determine a very surprising link betweenM -sequences

and f -vectors.

The g-theorem. The matrix equation

f = g �Md
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gives a one-to-one correspondence between f -vectors f of simplicial d-polytopes

and M-sequences g = (g0; g1; : : : ; gÆ).

The equation f = g �Md is to be understood as follows. Multiply each

entry in the �rst row ofMd by g0, then multiply each entry in the second row

by g1, and so on. Finally, after all these multiplications add the numbers in

each column. Then the �rst column sum will equal f0, the second column

sum will equal f1, and so on.

To exemplify the power of this theorem let us return to a question posed
earlier; namely, is the vector f displayed in equation (29) the f -vector of
a 10-polytope? This question can now be answered if sharpened from \10-

polytope" to \simplicial 10-polytope". Easy computation shows that

f = (1; 3; 4; 2; 0; 0) �M10;

and we know from Figure 22 that (1; 3; 4; 2; 0; 0) is an M -sequence. Hence, f
is indeed the f -vector of some simplicial 10-polytope.

Having seen this, one can wonder if we were just lucky with this relatively
small example. Perhaps for large d it is as hard to determine if a sequence
is an M -sequence as to determine if a sequence is an f -vector coming from a

simplicial polytope. This is not the case. There exists a very easy criterion
in terms of binomial coeÆcients that quickly tests an integer sequence for
being an M -sequence. We will however not state it here.

The proof of the g-theorem is very involved and calls on a lot of math-
ematical machinery. The part proved by Billera and Lee | that for every

M -sequence g there exists a simplicial polytope with the corresponding f -
vector | requires some very delicate geometrical arguments. The part proved

by Stanley | that conversely to every simplicial polytope there corresponds

an M -sequence in the stated way | uses tools from algebraic geometry in

an essential way. Here is a brief statement for readers with suÆcient back-

ground. There are certain complex projective varieties, called toric varieties,
associated to d-polytopes with rational coordinates, and the fact that the

sequence g corresponding to the f -vector of a polytope is an M -sequence

ultimately derives from a multicomplex that can be constructed in the coho-

mology algebra of such a variety.
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The g-vector associated to a simplicial polytope via the g-theorem is

rich in geometric, algebraic and combinatorial meaning, yet it is still poorly

understood and the subject of much current study.

In this paper we have several times commented on the many surprising,

remarkable and mysterious connections that exist between di�erent mathe-

matical objects, di�erent mathematical problems and di�erent mathematical

areas. Take for example the Schensted correspondence described in Section

3, connecting permutations and pairs of standard Young tableaux; or the

connections between combinatorics and representation theory or combina-
torics and topology described in earlier sections. The g-theorem is one more

example of this kind, establishing an unsuspected link between the combina-
torial structure of multicomplexes of monomials and the facial structure of

simplicial polytopes | two seemingly totally unrelated classes of objects.

In closing, let us once more mention that no characterization is known
for f -vectors of general polytopes of dimension greater than 3. The success

in the case of simplicial polytopes depends on some very special structure,
available in that case but lacking or much more complex in general. Thus,
the study of f -vectors, initiated by Euler's discovery almost 250 years ago,

is likely to remain an important challenge for many years to come.

13 Further reading.

We refer here mainly to general accounts that should be at least partially

accessible to the layman and that give lots of further references.

For a broad view of current combinatorics, with a wealth of information and

references, see

� Handbook of Combinatorics (R. Graham, M. Gr�otschel and L. Lov�asz,

eds.), North-Holland, Amsterdam/New York, and MIT Press, Cam-

bridge, Massachusetts, 1995.
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A good reference for number partitions is

� G. E. Andrews, The Theory of Partitions, Encyclopedia of Mathe-

matics and Its Applications, Vol. 2, Addison-Wesley, Reading, Mas-

sachusetts, 1976.

For the work of Bousquet-M�elou and Eriksson mentioned at the end of Sec-

tion 2, see

� M. Bousquet-M�elou and K. Eriksson, Lecture hall partitions, Parts 1

and 2, The Ramanujan Journal 1 (1997), 101{111, 165{185.

The basic theory of enumeration is developed in

� R. P. Stanley, Enumerative Combinatorics, Volume 1, Wadsworth &

Brooks/Cole, Monterey, CA, 1986 (second printing, Cambridge Uni-
versity Press, Cambridge/New York, 1997), and Volume 2, Cambridge

University Press, Cambridge/New York, to appear in 1998 or 1999.

The combinatorics of number and set partitions, standard Young tableaux,
generating functions and the M�obius function, together with algebraic ram-

i�cations, is discussed there. A briefer account of this material is given in

� I. Gessel and R. P. Stanley, Algebraic Enumeration, pp. 1021{1061 in

Handbook of Combinatorics, see above.

Another introduction to generating functions is given in

� H. S. Wilf, generatingfunctionology, Academic Press, San Diego, 1990.

The following book is a nice companion to the study of enumeration:
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� N. J. A. Sloane and S. Plou�e, The Encyclopedia of Integer Sequences,

Academic Press, 1995. There is also an interactive version on the web

at http://www.research.att.com/�njas/sequences/

An introduction to the combinatorics of permutations and Young tableaux

can be found in Chapter 7 of the book of Stanley cited above, as well as in

Chapter 5.1 of

� D. E. Knuth, The Art of Computer Programming, Vol. 3, Addison-
Wesley, Reading, Massachusetts, 1973 (updated and reprinted 1997),

and in

� B. E. Sagan, The symmetric group. Representations, combinatorial al-
gorithms, and symmetric functions, Wadsworth & Brooks/Cole, Paci�c

Grove, CA, 1991.

The latter book also gives an accessible introduction to the connections with
representation theory.

There is a huge literature on tilings, but most of this is not concerned with
enumerative problems. For a wealth of information concerning the non-
enumerative aspects see

� B. Gr�unbaum and G. C. Shephard, Tilings and Patterns, Freeman,

New York, 1987.

At present there is no good introduction to the enumerative aspects of tilings.

The results mentioned in this paper can be found in the following references:

� M. Ciucu, Enumeration of perfect matchings in graphs with re
ective

symmetry, Journal of Combinatorial Theory, Series A 77 (1997), 67{
97.
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� N. Elkies, G. Kuperberg, M. Larsen, and J. Propp, Alternating-sign

matrices and domino tilings, Parts I and II, Journal of Algebraic Com-

binatorics 1 (1992), 111{132, 219{234.

� W. Jockusch, Perfect matchings and perfect squares, Journal of Com-

binatorial Theory, Series A 67 (1994), 100{115.

For connections between combinatorics and topology, including more details

about the evasiveness and Kneser conjectures, see either of

� A. Bj�orner, Combinatorics and Topology, Notices of the American

Mathematical Society 32 (1985), 339{345.

� A. Bj�orner, Topological Methods, pp. 1819{1872 in Handbook of Com-

binatorics, see above.

Connections between combinatorics and computer science is a huge subject.
For some glimpses see

� L. Lov�asz, D. B. Shmoys, and �E. Tardos, Combinatorics in Computer

Science, pp. 2003{2038 in Handbook of Combinatorics, see above.

and for sorting algorithms also the book by Knuth mentioned above.

The disproof of Borsuk's conjecture is reported in

� B. Cipra, Disproving the obvious in higher dimensions, What's Hap-

pening in the Mathematical Sciences 1 (1993), 21{25.

� A. Skopenkov, Borsuk's problem, Quantum 7 (1996), 17{21,

while more about the k-equal problem and its solution can be found in

� A. Bj�orner, Subspace arrangements, in First European Congress of

Mathematics, Paris 1992 (A. Joseph et al., eds.), Progress in Mathe-

matics Series, Volume 119, Birkh�auser, Boston, 1994, pp. 321{370.
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Finally, for convex polytopes and the g-theorem we refer to

� G. M. Ziegler, Lectures on Polytopes, GTM Series, Springer-Verlag,

Berlin, 1995.
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