Group Work Tip #2. Encourage everybody in the group to participate in the discussion and listen to what the others are saying.

8. TOPOLOGY OF \mathbb{R}^n (CONTINUED)

Theorem 8.5. Let A be a subset of \mathbb{R}^n . Show that \mathbf{x} is a limit point of A iff for every r > 0 the ball $B_r(\mathbf{x})$ intersects A.

Exercise 8.6.

Definition. Given a subset A of \mathbb{R}^n , the closure of A, denoted \overline{A} , consists of all the limit points of A.

- (a) Prove that A is closed iff $\overline{A} = A$.
- (b) Show that \overline{A} is a <u>closed set</u> containing A. (It is in fact <u>the smallest</u> closed set containing A.)

Note. The above Theorem 8.5 gives a convenient method of effectively finding the closure of some sets. Use it to compute the closure of a ball $\overline{B_r(\mathbf{x}_0)}$ in \mathbb{R}^n , or to check your answer to 4.3.A in the last homework.

Exercise 8.7.

Definition. The **interior** of a subset A of a metric space X, denoted int(A), is the largest open set of X contained inside A. Consequently we have

$$int(A) \subseteq A \subseteq A$$
.

If $A \subset \mathbb{R}^n$ has empty interior, must it be closed? (*Hint*. Think at an example.)

Exercise 8.8. Show that a compact subset of \mathbb{R}^n is closed and bounded.

Exercise 8.9. Show that a closed subset C of a compact metric space X is compact.