Group Work Tip #1. Before moving on to the next problem, make sure that everybody understood the solution. One member of the group should try to summarize the method(s) employed.

8. Topology of \mathbb{R}^n

Exercise 8.1. Show that the open sets of \mathbb{R}^n (as defined in class or as in Definition 4.3.6) satisfy the axioms $(\tau 1)$, $(\tau 2)$, and $(\tau 3)$ of a topology.

Exercise 8.2. Give examples of open and closed subsets of \mathbb{R} , \mathbb{R}^2 , and \mathbb{R}^n .

Exercise 8.3.

Definition. A point **x** is a **limit point** of $A \subseteq \mathbb{R}^n$ if there is a sequence $(\mathbf{x}_k)_{k=1}^{\infty}$, with $\mathbf{x}_k \in A$, such that $\mathbf{x} = \lim_{k \to \infty} \mathbf{x}_k$.

Show that a subset A of \mathbb{R}^n is **closed** (that is, its complement is an open subset of \mathbb{R}^n) if and only if A contains all its limit points.

Exercise 8.4. Let X be a complete metric space. Show that $A \subseteq X$ is complete iff A is a closed subset.

Note. Read carefully Section 4.3 in the text-book. Read carefully Example 4.3.10. There are subsets of \mathbb{R}^n , actually most of them, which are neither open nor closed!