7. \mathbb{R}^n — Normed vector space and metric space

Exercise 7.1. Cauchy-Schwarz inequality.

- (a) Recall first the conditions that need to be imposed on the coefficients a, b, and c of the polynomial $f(t) = at^2 + bt + c$ in order to have $f(t) \ge 0$, for all $t \in \mathbb{R}$.
- (b) Considering

$$f(t) = ||t\mathbf{x} + \mathbf{y}||^2 = \langle t\mathbf{x} + \mathbf{y}, t\mathbf{x} + \mathbf{y} \rangle \ge 0$$
, for all $t \in \mathbb{R}$,

get the Cauchy-Schwarz inequality $|\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}|| \cdot ||\mathbf{y}||$. When is the equality obtained?

Exercise 7.2. Recall that we defined a **metric** on \mathbb{R}^n by

 $\rho: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_+, \ \rho(\mathbf{x}, \mathbf{y}) = \| \, \mathbf{x} - \mathbf{y} \, \|.$

Consider n = 2 and n = 3. Sketch the unit ball of \mathbb{R}^n :

$$B_1(\mathbf{0}) = \{ \mathbf{x} \in \mathbb{R}^n \, | \, \rho(\mathbf{x}, \mathbf{0}) = \| \, \mathbf{x} \, \| < 1 \}.$$

Also sketch the ball centered at \mathbf{x}_0 of radius r:

$$B_r(\mathbf{x}_0) = \{ \mathbf{x} \in \mathbb{R}^n \, | \, \rho(\mathbf{x}, \mathbf{x}_0) < r \}.$$

Exercise 7.3. Note that one can rephrase the usual definition of limit of a sequence $(a_n)_n$ of real numbers as:

$$(\forall \varepsilon > 0) \ (\exists N = N(\varepsilon)) \text{ s.t. } [\rho(a_n, L) < \varepsilon, \ (\forall n \ge N)].$$

- (a) Give first an intuitive and then a rigorous definition of convergence of a sequence $(\mathbf{x}_n)_n$ in \mathbb{R}^n .
- (b) Express the convergence that you introduced in terms of convergence of coordinates. (*Hint.* You may find useful the following:

if $\mathbf{x} = (x_1, x_2, \dots, x_n)$ then $|x_i| \le ||\mathbf{x}||, \forall i = 1, 2, \dots, n$.)

Exercise 7.4. Define what it means for a sequence $(\mathbf{x}_n)_n$ in \mathbb{R}^n to be Cauchy. Using the insight that you got in Exercise 7.3(b), show that \mathbb{R}^n is complete.