6. More about sequences and subsequences

Exercise 6.6. For a sequence $\left(a_{n}\right)_{n}$ the number $\lim \inf a_{n}$ is the smallest number to which a subsequence of $\left(a_{n}\right)_{n}$ can converge to, and $\lim \sup a_{n}$ is the biggest such number:

$$
\begin{aligned}
\lim \inf a_{n} & =\inf \left\{l \in \mathbb{R} \cup\{ \pm \infty\} \mid \exists\left(n_{k}\right)_{k} \text { with } \lim _{k} a_{n_{k}}=l\right\} \\
\lim \sup a_{n} & =\sup \left\{l \in \mathbb{R} \cup\{ \pm \infty\} \mid \exists\left(n_{k}\right)_{k} \text { with } \lim _{k} a_{n_{k}}=l\right\}
\end{aligned}
$$

(Hint. You may find useful to show/know that if $\lim \inf a_{n}>a$ then at most finitely many terms of $\left(a_{n}\right)_{n}$ are smaller than a.)

Remark. In Exercise 6.5 you were asked to show:
Cauchy's criterion for convergence. A sequence of real numbers is convergent if and only if it is a Cauchy sequence.
One of its immediate consequences is that \mathbb{R} is complete.

Exercise 6.7. What other subsets of \mathbb{R} do you think are also complete?

Exercise 6.8. The purpose of this exercise is to make sense of the following object:

It is known as a continued fraction, and is to be interpreted as the real number a which is the limit of the sequence:

$$
a_{1}=\frac{1}{2}, a_{2}=\frac{1}{2+\frac{1}{2}}=\frac{2}{5}, a_{3}=\frac{1}{2+\frac{1}{2+\frac{1}{2}}}, \ldots
$$

(a) Find a recursion formula, that is a formula that computes a_{n+1} as a function $f\left(a_{n}\right)$ of the preceding term (with $a_{1}=1 / 2$ given).
(b) Show that if $a_{n}>\sqrt{2}-1$ then $a_{n+1}<\sqrt{2}-1$, and vice versa.
(c) Use the recursion formula to compare a_{n+2} with a_{n}. (Hint. You should end up with deciding the sign of $g(x)=x^{2}+2 x-1, x \in \mathbb{R}$.)
(d) Conclude that $\left(a_{2 n}\right)_{n}$ is increasing and $\left(a_{2 n+1}\right)_{n}$ is decreasing.
(e) Show that $\left|a_{n+2}-a_{n+1}\right|<\left|a_{n+1}-a_{n}\right| / 4$, for all $n \geq 1$. Conclude that the sequence is Cauchy and find its limit.

