Exercise 4.2. Show that if a sequence $\left(a_{n}\right)_{n=1}^{\infty}$ converges to L, then any of its subsequences $\left(a_{n_{k}}\right)_{n=1}^{\infty}$ converges to the same limit.

Exercise 4.3. If a sequence $\left(a_{n}\right)_{n=1}^{\infty}$ of real numbers converges, then the set $\left\{a_{n} \mid n \in \mathbb{N}\right\}$ is bounded.

5. LUB PROPERTY

The sequence of statements in the next exercise leads to the Least Upper Bound (LUB) property of \mathbb{R}.

Exercise 5.1. Let $A \subset \mathbb{R}$ be non-empty and bounded below.
(a) Show that there exists the biggest integer a_{0} that is a lower bound for A.
(b) Show that there exists the biggest rational number of the form $a_{0} \cdot a_{1}$ which is a lower bound for A. Inductively, show that for every $n \in \mathbb{N}^{*}$ there exists a_{n} and there esists the biggest rational number of the form $a_{0} \cdot a_{1} a_{2} \ldots a_{n}$ which is a lower bound for A.
(c) Show that

$$
\inf A=a_{0} \cdot a_{1} a_{2} \ldots a_{n} \ldots
$$

Exercise 5.2. Consider a sequence of nested intervals $I_{1} \supset I_{2} \supset \cdots \supset I_{n} \supset \ldots$, where $I_{n}=\left[x_{n}, y_{n}\right]$. Using the LUB property show that

$$
\bigcap_{n=1}^{\infty} I_{n} \neq \emptyset
$$

(In words, any intersection of nested closed intervals is non-empty.)

Note. Exercise 5.2 is an important result. It can be used for example to show that closed intervals are compact (definition to come). If one were to define \mathbb{R} as an ordered field, containing \mathbb{Q}, with the least upper bound property, then Exercise 5.2 would allow one to prove the completeness of \mathbb{R}. In the approach taken by our text book, the completeness of \mathbb{R} is already contained in the infinite decimal expansion from the definition of a real number.

